Open Access

Table 1

Performance comparison for the five case studiesa

Case Metric GNN DeepONet POD-DeepONet FNO WNO NORM
1. Darcy problem MME 0.140(0.002) 0.045(4×10-4) 0.044(3×10-4) 0.094(0.002) 0.077(2×10-4) 0.039(4×10-4)
  E L 2 (%) 6.732(0.053) 1.358(0.013) 1.296(0.023) 3.826(0.077) 1.090(0.030) 1.046(0.020)
2. Pipe turbulence MME 2.358(0.125) 0.960(0.002) 0.241(0.017) 0.896(0.001) 0.892(0.001) 0.116(0.003)
  E L 2 (%) 23.583(1.411) 9.358(0.107) 2.587(0.275) 3.801(0.002) 3.786(0.003) 1.008(0.020)
3. Heat transfer MME 3.038(0.156) 1.304(0.045) 1.599(0.096)
  E L 2 (%) 0.072(0.002) 0.057(0.001) 0.027(0.002)
4. Composite MME 0.882(0.029) 0.157(0.002) 0.077(0.003) 0.051(0.002)
  E L 2 (%) 20.908(0.050) 1.880(0.034) 1.437(0.060) 0.999(0.027)
5. Blood flow MME 0.899(0.010) 0.488(0.002) 0.093(0.003)
  E L 2 (%) 60.613(0.961) 33.256(0.126) 4.822(0.061)

a: The values A(B) represent the mean and standard deviation of five repeated runs, respectively.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.