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Deep learning has flourished in different areas in recent years, such as computer vision and natural language
processing. However, with the end of Moore’s law, these applications that rely heavily on computing power
are facing bottlenecks. Optical neural networks (ONNs) [1] use light to perform calculations [2,3] featuring
high speed and low energy consumption, and they are widely regarded as the next-generation application-
specific integrated circuit (ASIC) [4,5] for artificial intelligence.

At present, ONNs have demonstrated many applications, such as vowel recognition and handwritten digit
recognition. Compared with current mainstream deep learning applications, for example, end-to-end object
detection [6], the tasks implemented on ONNs are very naive. One reason is that the number of neurons in
current ONNSs is much less than their electronic competitors. However, such limitation can be removed by
novel architecture design and improvement of optoelectronic integration technology eventually. Another
reason is that the strategies for training ONNs are still in a very early stage without a unified framework.
Different from digital neural networks, the backpropagation method is not suitable for all ONNs because the
gradient information is not easily available in some architectures [7]. To overcome this dilemma, three
classes of training strategies are specifically designed. Compared to their conventional electrical counter-
parts, ONNs using these strategies have shown the comparable performance. The first class relies on fine
tuning to map parameters from pre-trained models in-silico. Although these strategies can improve the
inference performance, the ONNSs fail to exploit the speed advantage due to the long training time caused by
fabrication deviation and environmental fluctuation. Therefore, another class based on in-situ training is
proposed. These strategies, directly training neural networks on the physical implementation, can adaptively
find optimal parameters under system distortion and are more suitable for realistic application. However,
restricted by approaches to obtain internal information from ONNSs, in-situ training strategies (gradient-based
and gradient-free) still suffer from a slow convergence rate for training large-scale ONNSs. The third class
proposes a hybrid in silico-in situ algorithm that utilizes backpropagation to the physical system. Although it
shows potential to train physical neural networks (PNN), PNN can only be considered as an extra supplement
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to existing systems that computing resources are mostly consumed in inference, since digital training models
are used.

One of the representative studies for the first class is shown in Figure 1A, which utilizes lookup tables to
map weights with different voltages [8]. With both lookup table and binary search algorithms for fine tuning,
parameter deviations can be minimized. Because of the optical neurons’ inconsistency, recharacterization is
always required in different systems. Such a method is only suitable for simple demonstrations, and it is
difficult to be utilized on large-scale ONNs. In ref. [9], an adaptive training method corrects pre-trained
models layer by layer sequentially to compensate imperfections of the physical system (Figure 1B). The
ONN achieves satisfied accuracies for high-speed image and video recognition and a computing performance
superior to advanced electronic computing platforms. Although this training strategy makes the ONNs
robust, it takes much time to train the neural networks with multiple iterations in-silico. Instead of mapping
pre-trained parameters to ONNS, the second class directly train ONNSs in-situ. As shown in Figure 1C, a
gradient-based training method is proposed in ref. [7]. This method obtains gradient information by finite
difference, but it is not suitable for large-scale ONN's because the training time grows exponentially with the
number of parameters. Another gradient-based training method shown in Figure 1D directly uses the
backpropagation algorithms (widely applied in neural networks) combined with the adjoint method in ref.
[10]. The ONN can successfully learn the XOR gate. It can optimize parameters in parallel, however, internal
information, such as field intensity and phase in each neuron, is still needed to calculate the gradient.
Therefore, a portion of optical power is used for monitoring neurons, resulting in optical signal-to-noise ratio
deterioration and reduction in calculation accuracy. Moreover, lossless assumption greatly limits the training
accuracy. One similar method without such assumption [11] requires optical fields to be reversely injected
into ONNSs for implementing backpropagation and the internal complex optical field should also be measured
at the same time. The ONNSs achieve accuracy comparable to in-silico training with an electronic computer
on the tasks of object classification and matrix-vector multiplication. To obtain optimal parameters without
extra loss, gradient-free strategies, such as the genetic algorithm and zeroth order optimization algorithm, are
applied. As shown in Figure 1E, a genetic algorithm, inspired by the evolution theory, is proposed to train
ONN:Ss in ref. [12]. Using the three genetic operators (crossover, selection, and mutation), optimal voltages
applied to the phase shifters are selected. The viability of the ONN has been confirmed using the crossbar
switch and the iris classification task. Zeroth-order optimization (Figure 1F), as another gradient-free strategy
widely used in black-box optimization, is also proposed in ref. [13]. Instead of direct measurement, it
estimates the gradient direction from sampling. Although gradient-free methods can optimize parameters
with no extra loss, a high convergence rate is not always guaranteed. To combine the in-situ and in-silico
training, one hybrid algorithm called physical aware training (PAT) is proposed in ref. [14] shown in Figure
1G. Since physical systems are hard to be analytically differentiated, the usual backpropagation cannot be
directly applied. Instead, digital models such as deep neural networks are used to estimate gradients. Updated
parameters along with data inputs are sent to physical systems to implement correct classification. Although
the PAT provides potential to train physical neural networks, using digital models makes it only benefit
inference. As we point out previously, current strategies have not fulfilled the requirement for massive and
efficient ONNSs training yet, and brand-new training strategies are still expected.

To bring ONNSs into reality, several challenges must be overcome. The first one is a mechanism to quickly

obtain internal information from ONNs without extra loss during training. Meanwhile, small intensity or
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Figure 1 Training strategies for ONNSs. (A) and (B) Two different training strategies to map parameters from pre-trained models. (C)—(F)
Four in-situ training strategies using finite difference, backpropagation with the adjoint method, genetic algorithm, and zeroth-order opti-
mization, respectively. (G) Physical aware training strategies for physical neural networks.
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phase variations should be accurately perceived. Gradient information should be easily acquired and then

parallel gradient descent that accelerates training can be implemented, which makes rapid training possible.

The second challenge is software-hardware co-design. Unlike digital neural networks, the training strategies

for ONNSs are not once for all, and they should be dedicatedly designed for different architectures. Since

training ONNs cannot be accomplished without digital electronics, the communication time between elec-

tronic and optical devices is another limitation to restricting the training speed. Monolithic integration

technology could be one possible approach to overcome this obstacle. Besides, reprogrammable photonic

nonlinear activation functions [15] are highly required since different types of functions can greatly impact

training efficiency in different tasks. It would be a critical step for blooming of ONNs and artificial in-

telligence once the massive and efficient training strategy was fulfilled.
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