Issue |
Natl Sci Open
Volume 1, Number 1, 2022
Special Topic: COVID-19: Virus, Immunity and Vaccines
|
|
---|---|---|
Article Number | 20220005 | |
Number of page(s) | 8 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20220005 | |
Published online | 24 April 2022 |
- Corti D, Lanzavecchia A. Broadly neutralizing antiviral antibodies. Annu Rev Immunol 2013; 31: 705-742. [Article] [CrossRef] [PubMed] [Google Scholar]
- Haynes BF, Burton DR, Mascola JR. Multiple roles for HIV broadly neutralizing antibodies. Sci Transl Med 2019; 11: [Article] [CrossRef] [PubMed] [Google Scholar]
- Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol 2018; 19: 1179-1188. [Article] [CrossRef] [PubMed] [Google Scholar]
- Devaux CA, Pinault L, Delerce J, et al. Spread of mink SARS-CoV-2 variants in humans: a model of sarbecovirus interspecies evolution. Front Microbiol 2021; 12: 675528. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fischer W, Giorgi EE, Chakraborty S, et al. HIV-1 and SARS-CoV-2: patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021; 29: 1093-1110. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li D, Sempowski GD, Saunders KO, et al. SARS-CoV-2 neutralizing antibodies for COVID-19 prevention and treatment. Annu Rev Med 2022; 73: 1-16. [Article] [CrossRef] [PubMed] [Google Scholar]
- Röltgen K, Boyd SD. Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell Host Microbe 2021; 29: 1063-1075. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shrestha LB, Tedla N, Bull RA. Broadly-neutralizing antibodies against emerging SARS-CoV-2 variants. Front Immunol 2021; 12: 752003. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hacisuleyman E, Hale C, Saito Y, et al. Vaccine breakthrough infections with SARS-CoV-2 variants. N Engl J Med 2021; 384: 2212-2218. [Article] [CrossRef] [PubMed] [Google Scholar]
- Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 Vaccine against the B.1.351 Variant. N Engl J Med 2021; 384: 1885-1898. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen X, Tang H, Pajon R, et al. Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351. N Engl J Med 2021; 384: 2352-2354. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 COVID-19 vaccine against the B.1.351 Variant. N Engl J Med 2021; 384: 1899-1909. [Article] [CrossRef] [PubMed] [Google Scholar]
- Madhi SA, Izu A, Pollard AJ. ChAdOx1 nCoV-19 vaccine efficacy against the B.1.351 variant. N Engl J Med 2021; 385: 571-572. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang R, Zhang Q, Ge J, et al. Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 2021; 54: 1611-1621.e5. [Article] [CrossRef] [PubMed] [Google Scholar]
- Corti D, Purcell LA, Snell G, et al. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021; 184: 3086-3108. [Article] [CrossRef] [PubMed] [Google Scholar]
- Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020; 182: 812-827.e19. [Article] [CrossRef] [PubMed] [Google Scholar]
- Weissman D, Alameh MG, de Silva T, et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 2021; 29: 23-31.e4. [Article] [CrossRef] [PubMed] [Google Scholar]
- Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021; 596: 276-280. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mlcochova P, Kemp SA, Dhar MS, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021; 599: 114-119. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu L, Iketani S, Guo Y, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022; 602: 676-681. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021; 184: 4220-4236.e13. [Article] [CrossRef] [PubMed] [Google Scholar]
- Thomson EC, Rosen LE, Shepherd JG, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 2021; 184: 1171-1187.e20. [Article] [CrossRef] [PubMed] [Google Scholar]
- Laffeber C, de Koning K, Kanaar R, et al. Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J Mol Biol 2021; 433: 167058. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tian F, Tong B, Sun L, et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 2021; 10: e69091. [Article] [CrossRef] [PubMed] [Google Scholar]
- Garcia-Beltran WF, Lam EC, St. Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021; 184: 2372-2383.e9. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang P, Casner RG, Nair MS, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 2021; 29: 747-751.e4. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021; 593: 130-135. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lok SM. An NTD supersite of attack. Cell Host Microbe 2021; 29: 744-746. [Article] [CrossRef] [PubMed] [Google Scholar]
- McCallum M, De Marco A, Lempp FA, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021; 184: 2332-2347.e16. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270-273. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581: 215-220. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7: 226-236. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021; 19: 141-154. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367: 1260-1263. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yao H, Song Y, Chen Y, et al. Molecular architecture of the SARS-CoV-2 virus. Cell 2020; 183: 730-738.e13. [Article] [CrossRef] [PubMed] [Google Scholar]
- Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181: 281-292.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song W, Gui M, Wang X, et al. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018; 14: e1007236. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cai Y, Zhang J, Xiao T, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 2020; 369: 1586-1592. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Cai Y, Xiao T, et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 2021; 372: 525-530. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280.e8. [Article] [CrossRef] [PubMed] [Google Scholar]
- Simmons G, Gosalia DN, Rennekamp AJ, et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102: 11876-11881. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Barnes CO, Jette CA, Abernathy ME, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020; 588: 682-687. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ge J, Wang R, Ju B, et al. Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nat Commun 2021; 12: 250. [Article] [CrossRef] [PubMed] [Google Scholar]
- Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020; 584: 437-442. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Starr TN, Czudnochowski N, Liu Z, et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021; 597: 97-102. [Article] [CrossRef] [PubMed] [Google Scholar]
- Turner JS, Kim W, Kalaidina E, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 2021; 595: 421-425. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang Q, Ju B, Ge J, et al. Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. Nat Commun 2021; 12: 4210. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020; 584: 443-449. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou P, Yuan M, Song G, et al. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med 2022; [Article] [Google Scholar]
- Pinto D, Sauer MM, Czudnochowski N, et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 2021; 373: 1109-1116. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021; 592: 616-622. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hastie KM, Li H, Bedinger D, et al. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science 2021; 374: 472-478. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yuan M, Liu H, Wu NC, et al. Structural basis of a shared antibody response to SARS-CoV-2. Science 2020; 369: 1119-1123. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shan S, Mok CK, Zhang S, et al. A potent and protective human neutralizing antibody against SARS-CoV-2 variants. Front Immunol 2021; 12: 766821. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li T, Xue W, Zheng Q, et al. Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nat Commun 2021; 12: 5652. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li D, Edwards RJ, Manne K, et al. and functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 2021; 184: 4203-4219.e32. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kramer KJ, Johnson NV, Shiakolas AR, et al. Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Rep 2021; 37: 109784. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tortorici MA, Czudnochowski N, Starr TN, et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021; 597: 103-108. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020; 584: 115-119. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Stamatatos L, Czartoski J, Wan YH, et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021; 372: 1413-1418. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tan CW, Chia WN, Young BE, et al. Pan-sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors. N Engl J Med 2021; 385: 1401-1406. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.