Open Access
Issue
Natl Sci Open
Volume 2, Number 1, 2023
Article Number 20220036
Number of page(s) 8
Section Materials Science
DOI https://doi.org/10.1360/nso/20220036
Published online 29 December 2022
  • Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2017; 2: 16103. [Article] [CrossRef] [Google Scholar]
  • Zheng S, Ma J, Wu ZS, et al. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ Sci 2018; 11: 2001-2009. [Article] [CrossRef] [Google Scholar]
  • Zhao Q, Stalin S, Zhao CZ, et al. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 2020; 5: 229-252. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017; 16: 572-579. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li Z, Guo X. Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Sci China Chem 2021; 64: 673-680. [Article] [CrossRef] [Google Scholar]
  • Chen R, Li Q, Yu X, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem Rev 2020; 120: 6820-6877. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Arbi K, Mandal S, Rojo JM, et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2−xAlx(PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study. Chem Mater 2002; 14: 1091-1097. [Article] [CrossRef] [Google Scholar]
  • Wu JF, Guo X. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67−xTiO3. Phys Chem Chem Phys 2017; 19: 5880-5887. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wu JF, Pang WK, Peterson VK, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces 2017; 9: 12461-12468. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011; 10: 682-686. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 2016; 1: 16030. [Article] [CrossRef] [Google Scholar]
  • Zhou L, Park KH, Sun X, et al. Solvent-engineered design of argyrodite Li6PS5X (X=Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett 2018; 4: 265-270. [Article] [Google Scholar]
  • Nikodimos Y, Huang CJ, Taklu BW, et al. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders. Energy Environ Sci 2022; 15: 991-1033. [Article] [CrossRef] [Google Scholar]
  • Wang C, Liang J, Zhao Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ Sci 2021; 14: 2577-2619. [Article] [CrossRef] [Google Scholar]
  • Li X, Liang J, Yang X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ Sci 2020; 13: 1429-1461. [Article] [CrossRef] [Google Scholar]
  • Liu H, Cheng XB, Huang JQ, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett 2020; 5: 833-843. [Article] [CrossRef] [Google Scholar]
  • Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc 2004; 151: A880. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ding P, Lin Z, Guo X, et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater Today 2021; 51: 449-474. [Article] [Google Scholar]
  • Yao Y, Wei Z, Wang H, et al. Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv Energy Mater 2020; 10: 1903698. [Article] [CrossRef] [Google Scholar]
  • Long L, Wang S, Xiao M, et al. Polymer electrolytes for lithium polymer batteries. J Mater Chem A 2016; 4: 10038-10069. [Article] [CrossRef] [Google Scholar]
  • Bi Z, Guo X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater 2022; 2: 200011. [Article] [CrossRef] [Google Scholar]
  • Xi G, Xiao M, Wang S, et al. Polymer-based solid electrolytes: Material selection, design, and application. Adv Funct Mater, 2020, 31: 2007598. [Article] [Google Scholar]
  • Zhou Q, Ma J, Dong S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 2019; 31: 1902029. [Article] [CrossRef] [Google Scholar]
  • Zheng Y, Yao Y, Ou J, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev 2020; 49: 8790-8839. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li Z, Huang HM, Zhu JK, et al. Ionic conduction in composite polymer electrolytes: Case of PEO:Ga-LLZO composites. ACS Appl Mater Interfaces 2019; 11: 784-791. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Xu L, Li J, Shuai H, et al. Recent advances of composite electrolytes for solid-state Li batteries. J Energy Chem 2022; 67: 524-548. [Article] [CrossRef] [Google Scholar]
  • Zheng S, Huang H, Dong Y, et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ Sci 2020; 13: 821-829. [Article] [CrossRef] [Google Scholar]
  • Li Z, Zhou XY, Guo X. High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes. Energy Storage Mater 2020; 29: 149-155. [Article] [CrossRef] [Google Scholar]
  • Mu X, Li X, Liao C, et al. Phosphorus-fixed stable interfacial nonflammable gel polymer electrolyte for safe flexible lithium-ion batteries. Adv Funct Mater 2022; 32: 2203006. [Article] [CrossRef] [Google Scholar]
  • Tan SJ, Yue J, Tian YF, et al. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Mater 2021; 39: 186-193. [Article] [CrossRef] [Google Scholar]
  • Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries. Adv Energy Mater 2022; 12: 2100748. [Article] [CrossRef] [Google Scholar]
  • Zhou D, Shanmukaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019; 5: 2326-2352. [Article] [CrossRef] [Google Scholar]
  • Lee J, Sun C, Ma BS, et al. Efficient, thermally stable, and mechanically robust all-polymer solar cells consisting of the same benzodithiophene unit-based polymer acceptor and donor with high molecular compatibility. Adv Energy Mater 2021; 11: 2003367. [Article] [CrossRef] [Google Scholar]
  • Zhao Q, Liu X, Stalin S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy 2019; 4: 365-373. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wen P, Lu P, Shi X, et al. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv Energy Mater, 2020, 11: 2002930. [Article] [Google Scholar]
  • Tan SJ, Wang WP, Tian YF, et al. Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: Progress and prospects. Adv Funct Mater, 2021, 31: 2105253. [Article] [CrossRef] [Google Scholar]
  • Li Z, Weng S, Fu J, et al. Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Mater 2022; 47: 542-550. [Article] [CrossRef] [Google Scholar]
  • Lee KH, Lim HS, Wang JH. Effect of unreacted monomer on performance of lithium-ion polymer batteries based on polymer electrolytes prepared by free radical polymerization. J Power Sources 2005; 139: 284-288. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang WP, Zhang J, Chou J, et al. Solidifying cathode-electrolyte interface for lithium–sulfur batteries. Adv Energy Mater, 2020, 11: 2000791. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.