Issue |
Natl Sci Open
Volume 2, Number 2, 2023
Special Topic: Chemistry Boosts Carbon Neutrality
|
|
---|---|---|
Article Number | 20220044 | |
Number of page(s) | 13 | |
Section | Chemistry | |
DOI | https://doi.org/10.1360/nso/20220044 | |
Published online | 17 February 2023 |
- Artz J, Müller TE, Thenert K, et al. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem Rev 2018; 118: 434-504. [Article] [CrossRef] [PubMed] [Google Scholar]
- De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science 2019; 364: aav3506. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Navarro-Jaén S, Virginie M, Bonin J, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem 2021; 5: 564-579. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem Soc Rev 2021; 50: 4993-5061. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li L, Li X, Sun Y, et al. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev 2022; 51: 1234-1252. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Kou Z, Li X, Wang T, et al. Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem Energy Rev 2022; 5: 82-111. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- He J, Li Y, Huang A, et al. Electrolyzer and catalysts design from carbon dioxide to carbon monoxide electrochemical reduction. Electrochem Energy Rev 2021; 4: 680-717. [Article] [CrossRef] [Google Scholar]
- Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 1994; 39: 1833-1839. [Article] [CrossRef] [Google Scholar]
- Kuhl KP, Cave ER, Abram DN, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 2012; 5: 7050. [Article] [CrossRef] [Google Scholar]
- Gauthier JA, Lin Z, Head-Gordon M, et al. Pathways for the formation of C2+ products under alkaline conditions during the electrochemical reduction of CO2. ACS Energy Lett 2022; 7: 1679-1686. [Article] [CrossRef] [Google Scholar]
- Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 2019; 119: 7610-7672. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu ZZ, Zhang XL, Niu ZZ, et al. Identification of Cu(100)/Cu(111) Interfaces as superior active sites for CO dimerization during CO2 electroreduction. J Am Chem Soc 2022; 144: 259-269. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang PP, Zhang XL, Gao FY, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J Am Chem Soc 2020; 142: 6400-6408. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020; 577: 509-513. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 2012; 134: 7231-7234. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014; 508: 504-507. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang B, Zhang J, Hua M, et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J Am Chem Soc 2020; 142: 13606-13613. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gu Z, Shen H, Chen Z, et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 2021; 5: 429-440. [Article] [Google Scholar]
- Verdaguer-Casadevall A, Li CW, Johansson TP, et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc 2015; 137: 9808-9811. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sang J, Wei P, Liu T, et al. A Reconstructed Cu2P2O7 Catalyst for Selective CO2 Electroreduction to Multicarbon Products. Angew Chem Int Ed 2022; 61: e202114238. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lei Q, Zhu H, Song K, et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J Am Chem Soc 2020; 142: 4213-4222. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lei Q, Huang L, Yin J, et al. Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat Commun 2022; 13: 4857. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Brown Bourzutschky J. Conversion of synthesis gas over LaMn1−xCuxO3+λ; perovskites and related copper catalysts. J Catal 1990; 124: 52-72. [Article] [CrossRef] [Google Scholar]
- Seitz LC, Dickens CF, Nishio K, et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016; 353: 1011-1014. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schwartz M, Cook RL, Kehoe VM, et al. Carbon dioxide reduction to alcohols using perovskite-type electrocatalysts. J Electrochem Soc 1993; 140: 614-618. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mignard D, Barik RC, Bharadwaj AS, et al. Revisiting strontium-doped lanthanum cuprate perovskite for the electrochemical reduction of CO2. J CO2 Util 2014; 5: 53-59. [Article] [CrossRef] [Google Scholar]
- Cheong SW, Thompson JD, Fisk Z. Properties of La2CuO4 and related compounds. Physica C-Supercond 1989; 158: 109-126. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Dwivedi A, Rodriguez MA, Cormack AN. Defect-chemical aspects in the synthesis of metallic conductors La1−xBaxCuO3 (x = 0.0 to 0.5). J Am Ceramic Soc 2005; 75: 1993-1996. [Article] [CrossRef] [Google Scholar]
- Zheng K, Gorzkowska-Sobaś A, Świerczek K. Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs. Mater Res Bull 2012; 47: 4089-4095. [Article] [Google Scholar]
- Gong Z, Zhong W, He Z, et al. Improving electrochemical nitrate reduction activity of layered perovskite oxide La2CuO4 via B-site doping. Catal Today 2022; 402: 259-265. [Article] [CrossRef] [Google Scholar]
- Vasquez RP. X-ray photoemission measurements of La1−xCaCoO3 (x=0, 0.5). Phys Rev B 1996; 54: 14938-14941. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yousaf AB, Imran M, Farooq M, et al. Interfacial phenomenon and nanostructural enhancements in palladium loaded lanthanum hydroxide nanorods for heterogeneous catalytic applications. Sci Rep 2018; 8: 4354. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Viswanathan B, Madhavan S, Swamy CS. Charge transfer satellites in X-ray photoelectron spectra of La2CuO4. Phys Stat Sol (B) 1986; 133: 629-632. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Imai Y, Kato M, Takarabe Y, et al. Low-temperature synthesis of La2CuO4 with the Tʹ-structure from molten hydroxides. Chem Mater 2007; 19: 3584-3585. [Article] [CrossRef] [Google Scholar]
- Whittingham AWH, Smith RDL. Electrochemically induced phase changes in La2CuO4 during cathodic electrocatalysis. ChemElectroChem 2019; 6: 5116-5123. [Article] [CrossRef] [Google Scholar]
- Bard AJ, Parsons R, Jordan J. Standard Potentials in Aqueous Solutions. New York: Marcel Dekker, 1985 [Google Scholar]
- Branco JB, Ballivet-Tkatchenko D, Matos AP. Reduction and catalytic behaviour of heterobimetallic copper-lanthanide oxides. J Alloys Compd 2008; 464: 399-406. [Article] [CrossRef] [Google Scholar]
- Ciavatta L, Ferri D, Grenthe I, et al. Studies on metal carbonate equilibria. 3. The lanthanum(III) carbonate complexes in aqueous perchlorate media. Acta Chem Scand 1981; 35a: 403-413. [Article] [Google Scholar]
- Mariano RG, McKelvey K, White HS, et al. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 2017; 358: 1187-1192. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mariano RG, Kang M, Wahab OJ, et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat Mater 2021; 20: 1000-1006. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sebastián-Pascual P, Escudero-Escribano M. Surface characterization of copper electrocatalysts by lead underpotential deposition. J Electroanal Chem 2021; 896: 115446. [Article] [CrossRef] [Google Scholar]
- Rabinowitz JA, Kanan MW. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat Commun 2020; 11: 5231. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lv JJ, Jouny M, Luc W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv Mater 2018; 30: 1803111. [Article] [CrossRef] [Google Scholar]
- Zhang X, Li J, Li YY, et al. Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. J Am Chem Soc 2021; 143: 3245-3255. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ooka H, Figueiredo MC, Koper MTM. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 2017; 33: 9307-9313. [Article] [Google Scholar]
- Ma M, Clark EL, Therkildsen KT, et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ Sci 2020; 13: 977-985. [Article] [CrossRef] [Google Scholar]
- Chen C, Yan X, Wu Y, et al. The in situ study of surface species and structures of oxide-derived copper catalysts for electrochemical CO2 reduction. Chem Sci 2021; 12: 5938-5943. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yan X, Chen C, Wu Y, et al. Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chem Sci 2021; 12: 6638-6645. [Article] [CrossRef] [PubMed] [Google Scholar]
- Niu ZZ, Gao FY, Zhang XL, et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J Am Chem Soc 2021; 143: 8011-8021. [Article] [CrossRef] [PubMed] [Google Scholar]
- Endrődi B, Kecsenovity E, Samu A, et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett 2019; 4: 1770-1777. [Article] [CrossRef] [PubMed] [Google Scholar]
- Verma S, Hamasaki Y, Kim C, et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett 2017; 3: 193-198. [Article] [Google Scholar]
- Dinh CT, Burdyny T, Kibria MG, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018; 360: 783-787. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gunathunge CM, Li J, Li X, et al. Surface-adsorbed CO as an infrared probe of electrocatalytic interfaces. ACS Catal 2020; 10: 11700-11711. [Article] [CrossRef] [Google Scholar]
- Li J, Chang X, Zhang H, et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat Commun 2021; 12: 3264. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gunathunge CM, Ovalle VJ, Li Y, et al. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal 2018; 8: 7507-7516. [Article] [CrossRef] [Google Scholar]
- Bai H, Cheng T, Li S, et al. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci Bull 2021; 66: 62-68. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen S, Su Y, Deng P, et al. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production. ACS Catal 2020; 10: 4640-4646. [Article] [CrossRef] [Google Scholar]
- Gunathunge CM, Li X, Li J, et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J Phys Chem C 2017; 121: 12337-12344. [Article] [Google Scholar]
- Smoluchowski R. Anisotropy of the electronic work function of metals. Phys Rev 1941; 60: 661-674. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mason SE, Grinberg I, Rappe AM. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. Phys Rev B 2004; 69: 161401. [Article] arxiv:cond-mat/0310688 [NASA ADS] [CrossRef] [Google Scholar]
- Vollmer S, Witte G, Wöll C. Determination of site specific adsorption energies of CO on copper. Catal Lett 2001; 77: 97-101. [Article] [Google Scholar]
- Liu X, Xiao J, Peng H, et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun 2017; 8: 15438. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.