Issue |
Natl Sci Open
Volume 2, Number 3, 2023
Special Topic: Glasses—Materials and Physics
|
|
---|---|---|
Article Number | 20220048 | |
Number of page(s) | 26 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20220048 | |
Published online | 26 April 2023 |
- Sun BA, Wang WH. The fracture of bulk metallic glasses. Prog Mater Sci 2015; 74: 211-307. [Article] [CrossRef] [Google Scholar]
- Wang WH. A brief history of metallic glasses (in Chinese). Physics 2011; 40: 701−709 [Google Scholar]
- Carlson DE, Wronski CR. Amorphous silicon solar cell. Appl Phys Lett 1976; 28: 671-673. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Derkacs D, Lim SH, Matheu P, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 2006; 89: 093103. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Rech B, Wagner H. Potential of amorphous silicon for solar cells. Appl Phys A-Mater Sci Process 1999; 69: 155-167. [Article] [Google Scholar]
- Boolchand P, Bresser WJ. Mobile silver ions and glass formation in solid electrolytes. Nature 2001; 410: 1070-1073. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ravaine D. Glasses as solid electrolytes. J Non-Cryst Solids 1980; 38−39: 353−358 [CrossRef] [Google Scholar]
- Wong HSP, Raoux S, Kim SB, et al. Phase change memory. Proc IEEE 2010; 98: 2201-2227. [Article] [CrossRef] [Google Scholar]
- Simpson RE, Fons P, Kolobov AV, et al. Interfacial phase-change memory. Nat Nanotechnol 2011; 6: 501-505. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Raoux S, Xiong F, Wuttig M, et al. Phase change materials and phase change memory. MRS Bull 2014; 39: 703-710. [Article] [CrossRef] [Google Scholar]
- Okoshi T. Optical Fibers. New York: Academic Press, 1982 [Google Scholar]
- Ashby M, Greer A. Metallic glasses as structural materials. Scripta Mater 2006; 54: 321-326. [Article] [Google Scholar]
- Yao KF, Shi LX, Chen SQ, et al. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Phys Sin 2018; 67: 016101. [Article] [Google Scholar]
- Yoon C, Cocke DL. Potential of amorphous materials as catalysts. J Non-Crystalline Solids 1986; 79: 217-245. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Deng JF, Li H, Wang W. Progress in design of new amorphous alloy catalysts. Catal Today 1999; 51: 113-125. [Article] [Google Scholar]
- Morales-Guio CG, Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc Chem Res 2014; 47: 2671-2681. [Article] [Google Scholar]
- Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliver Rev 2001; 48: 27-42. [Article] [Google Scholar]
- Croissant JG, Butler KS, Zink JI, et al. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nat Rev Mater 2020; 5: 886-909. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Klement W, Willens RH, Duwez P. Non-crystalline structure in solidified gold-silicon alloys. Nature 1960; 187: 869-870. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang JQ, Wang WH, Yu HB, et al. Correlations between elastic moduli and molar volume in metallic glasses. Appl Phys Lett 2009; 94: 121904. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Dmowski W, Iwashita T, Chuang CP, et al. Elastic heterogeneity in metallic glasses. Phys Rev Lett 2010; 105: 205502. [Article] [CrossRef] [PubMed] [Google Scholar]
- Poulsen HF, Wert JA, Neuefeind J, et al. Measuring strain distributions in amorphous materials. Nat Mater 2005; 4: 33-36. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 2012; 57: 487-656. [Article] [CrossRef] [Google Scholar]
- Inoue A, Zhang T, Itoi T,et al. New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties. Mater Trans JIM 1997; 38: 359−362 [Google Scholar]
- Dai YJ, Huan Y, Gao M, et al. Development of a high-resolution micro-torsion tester for measuring the shear modulus of metallic glass fibers. Meas Sci Technol 2015; 26: 025902. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pang SJ, Zhang T, Asami K, et al. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater 2002; 50: 489-497. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gotze W, Sjogren L. Relaxation processes in supercooled liquids. Rep Prog Phys 1992; 55: 241-376. [Article] [CrossRef] [Google Scholar]
- Busch R, Schroers J, Wang WH. Thermodynamics and kinetics of bulk metallic glass. MRS Bull 2007; 32: 620-623. [Article] [CrossRef] [Google Scholar]
- Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 2000; 48: 279-306. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 1965; 43: 139-146. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fecht HJ, Johnson WL. Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 1988; 334: 50-51. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun Y, Concustell A, Greer AL. Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nat Rev Mater 2016; 1: 16039. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Busch R, Kim YJ, Johnson WL. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J Appl Phys 1995; 77: 4039−4043 [NASA ADS] [CrossRef] [Google Scholar]
- Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature 2001; 410: 259-267. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang JQ, Chen N, Liu P, et al. The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater 2014; 79: 30-36. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lan S, Blodgett M, Kelton KF,et al. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition, Appl Phys Lett 2016; 108: 211907 [NASA ADS] [CrossRef] [Google Scholar]
- Nakanishi S. Through the glass lightly. Science 1995; 267: 1615-1616. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zallen R. The Physics of Amorphous Solids. New Jersey: John Wiley & Sons, 2007 [Google Scholar]
- Kelton KF, Lee GW, Gangopadhyay AK, et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett 2003; 90: 195504. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gaskell PH. Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data. J Non-Crystalline Solids 2005; 351: 1003-1013. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hufnagel TC, Gu X, Munkholm A. Anomalous small-angle X-ray scattering studies of phase separation in bulk amorphous Zr52.5Ti5Cu17.9Ni14.6Al10. Mater Trans 2001; 42: 562-564. [Article] [Google Scholar]
- Yang Y, Zeng JF, Volland A, et al. Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Mater 2012; 60: 5260-5272. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett 2011; 106: 125504. [Article] arxiv:1102.5598 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass. Nat Mater 2011; 10: 28-33. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hirata A, Ichitsubo T, Guan PF, et al. Distortion of local atomic structures in amorphous Ge-Sb-Te phase change materials. Phys Rev Lett 2018; 120: 205502. [Article] [CrossRef] [PubMed] [Google Scholar]
- Voyles PM, Gibson JM, Treacy MMJ. Fluctuation microscopy: a probe of atomic correlations in disordered materials. J Electron Microsc 2000; 49: 259-266. [Article] [Google Scholar]
- Yi F, Voyles PM. Analytical and computational modeling of fluctuation electron microscopy from a nanocrystal/amorphous composite. Ultramicroscopy 2012; 122: 37-47. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yeh HL, Maddin R. Crystallization of amorphous Fe-P-C alloys. MTA 1979; 10: 771-781. [Article] [CrossRef] [Google Scholar]
- Zhu F, Song S, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nat Commun 2018; 9: 3965. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu F, Nguyen HK, Song SX, et al. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass. Nat Commun 2016; 7: 11516. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Imafuku M, Saito K, Kanehashi K, et al. Change in environmental structure around Al in Zr60Ni25Al15 metallic glass upon crystallization studied by nuclear magnetic resonance. J Non-Crystalline Solids 2005; 351: 3587-3592. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Orava J, Balachandran S, Han X, et al. In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass. Nat Commun 2021; 12: 2839. [Article] [CrossRef] [PubMed] [Google Scholar]
- Egami T, Billinge SJL. Underneath the Bragg peaks: Structural Analysis of Complex Materials. Amsterdam: Elsevier, 2003 [Google Scholar]
- Rehr JJ, Albers RC. Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 2000; 72: 621-654. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yun YH, Bray PJ. Nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2. J Non-Crystalline Solids 1978; 27: 363-380. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kazimirov VY, Louca D, Widom M, et al. Local organization and atomic clustering in multicomponent amorphous steels. Phys Rev B 2008; 78: 054112. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Biswas P, Tafen DN, Inam F, et al. Materials modeling by design: applications to amorphous solids. J Phys-Condens Matter 2009; 21: 084207. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zeng Q, Sheng H, Ding Y, et al. Long-range topological order in metallic glass. Science 2011; 332: 1404-1406. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Egami T. Understanding the properties and structure of metallic glasses at the atomic level. JOM 2010; 62: 70−75 [NASA ADS] [CrossRef] [Google Scholar]
- Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 2021; 592: 60-64. [Article] arxiv:2004.02266 [Google Scholar]
- Yuan Y, Kim DS, Zhou J, et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat Mater 2022; 21: 95-102. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang Y, Chen CC, Scott MC, et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017; 542: 75-79. [Article] arxiv:1607.02051 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhou J, Yang Y, Yang Y, et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 2019; 570: 500-503. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li ZZ, Xie ZH, Zhang Y,et al. Probing the atomically diffuse interfaces in core-shell nanoparticles in three dimensions. arXiv: 2207.0810 [Google Scholar]
- Yang Y, Zhou J, Zhao Z,et al. Atomic-scale identification of the active sites of nanocatalysts. arXiv: 2202.09460 [Google Scholar]
- Coontz R, Fahrenkamp-Uppenbrink J, Lavine M, et al. Going from strength to strength. Science 2014; 343: 1091. [Article] [CrossRef] [PubMed] [Google Scholar]
- Warren BE. X-ray determination of the structure of glass. J Am Ceramic Soc 1992; 75: 5-10. [Article] [Google Scholar]
- Warren BE. The diffraction of X-rays in glass. Phys Rev 1934; 45: 657-661. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bernal JD. A geometrical approach to the structure of liquids. Nature 1959; 183: 141-147. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bernal JD. Geometry of the structure of monatomic liquids. Nature 1960; 185: 68-70. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cargill GS. Dense random packing of hard spheres as a structural model for noncrystalline metallic solids. J Appl Phys 1970; 41: 2248-2250. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Finney JL. Bernal’s road to random packing and the structure of liquids. Philos Mag 2013; 93: 3940-3969. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mendelev MI, Sordelet DJ, Kramer MJ. Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses. J Appl Phys 2007; 102: 043501. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci 2011; 56: 379-473. [Article] [CrossRef] [Google Scholar]
- Fischer HE, Barnes AC, Salmon PS. Neutron and X-ray diffraction studies of liquids and glasses. Rep Prog Phys 2006; 69: 233−299 [CrossRef] [Google Scholar]
- Amann-Winkel K, Bellissent-Funel MC, Bove LE, et al. X-ray and neutron scattering of water. Chem Rev 2016; 116: 7570-7589. [Article] [Google Scholar]
- Benmore CJ. A review of high-energy X-ray diffraction from glasses and liquids. ISRN Mater Sci 2012; : 852905 [Google Scholar]
- Sheng HW, Luo WK, Alamgir FM, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006; 439: 419-425. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sheng HW, Cheng YQ, Lee PL, et al. Atomic packing in multicomponent aluminum-based metallic glasses. Acta Mater 2008; 56: 6264-6272. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sheng HW, Liu HZ, Cheng YQ, et al. Polyamorphism in a metallic glass. Nat Mater 2007; 6: 192-197. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lou H, Zeng Z, Zhang F, et al. Two-way tuning of structural order in metallic glasses. Nat Commun 2020; 11: 314. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fukunaga T, Itoh K, Otomo T, et al. Topological characterization of metallic glasses by neutron diffraction and RMC modeling. Physica B-Condensed Matter 2006; 385-386: 259-262. [Article] [CrossRef] [Google Scholar]
- Gulenko A, Forto Chungong L, Gao J, et al. Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffraction. Phys Chem Chem Phys 2017; 19: 8504-8515. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Zhao Y. Formation of zirconium metallic glass. Nature 2004; 430: 332-335. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu Y, Ma D, Li QK, et al. Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction. Acta Mater 2017; 124: 478-488. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sakata M, Cowlam N, Davies HA. Neutron diffraction measurement of the structure factor of a CuTi metallic glass. J Phys F-Met Phys 1979; 9: L235-L240. [Article] [Google Scholar]
- Ma D, Stoica AD, Wang XL. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat Mater 2009; 8: 30-34. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lan S, Wu Z, Wei X, et al. Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses. Acta Mater 2018; 149: 108-118. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen X, Gibson JM, Sullivan J, et al. Fluctuation microscopy studies of medium-range order structures in amorphous tetrahedral semiconductors. MRS Proc 2000; 638: 14401. [Article] [CrossRef] [Google Scholar]
- Treacy MMJ, Gibson JM. Coherence and multiple scattering in “Z-contrast” images. Ultramicroscopy 1993; 52: 31-53. [Article] [CrossRef] [Google Scholar]
- Treacy MMJ, Gibson JM. Variable coherence microscopy: a rich source of structural information from disordered materials. Acta Crystlogr Found Crystlogr 1996; 52: 212-220. [Article] [Google Scholar]
- Gibson JM, Treacy MMJ, Voyles PM. Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 2000; 83: 169-178. [Article] [CrossRef] [PubMed] [Google Scholar]
- Iwai T, Voyles PM, Gibson JM, et al. Method for detecting subtle spatial structures by fluctuation microscopy. Phys Rev B 1999; 60: 191-200. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Voyles PM, Muller DA. Fluctuation microscopy in the STEM. Ultramicroscopy 2002; 93: 147-159. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gibson JM, Treacy MMJ. Diminished medium-range order observed in annealed amorphous Germanium. Phys Rev Lett 1997; 78: 1074-1077. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Treacy MMJ, Gibson JM, Keblinski PJ. Paracrystallites found in evaporated amorphous tetrahedral semiconductors. J Non-Crystalline Solids 1998; 231: 99-110. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li J, Gu X, Hufnagel TC. Medium-range order in metallic glasses studied by fluctuation microscopy. Microsc Microanal 2001; 7: 1260-1261. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hufnagel TC, Fan C, Ott RT, et al. Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 2002; 10: 1163-1166. [Article] [Google Scholar]
- Li J, Gu X, Hufnagel TC. Using fluctuation microscopy to characterize structural order in metallic glasses. Microsc Microanal 2003; 9: 509−515 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Stratton WG, Voyles PM, Hamann J, et al. Medium-range order in high al-content amorphous alloys measured by fluctuation electron microscopy. Microsc Microanal 2004; 10: 788-789. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ho MY, Gong H, Wilk GD, et al. Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition. J Appl Phys 2003; 93: 1477-1481. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Stratton WG, Hamann J, Perepezko JH,et al. Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy. Appl Phys Lett 2005; 86: 141910 [NASA ADS] [CrossRef] [Google Scholar]
- Stratton WG, Hamann J, Perepezko JH, et al. Electron beam induced crystallization of amorphous Al-based alloys in the TEM. Intermetallics 2006; 14: 1061-1065. [Article] [Google Scholar]
- Kwon MH, Lee BS, Bogle SN,et al. Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy. Appl Phys Lett 2007; 90: 2005−2008 [Google Scholar]
- Cowley JM. Electron nanodiffraction methods for measuring medium-range order. Ultramicroscopy 2002; 90: 197-206. [Article] [CrossRef] [Google Scholar]
- Hwang J, Melgarejo ZH, Kalay YE,et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys Rev Lett 2012; 108: 195505 [CrossRef] [PubMed] [Google Scholar]
- Zhang P, Wang Z, Perepezko JH, et al. Vitrification, crystallization, and atomic structure of deformed and quenched Ni60Nb40 metallic glass. J Non-Crystalline Solids 2018; 491: 133-140. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pekin TC, Ding J, Gammer C, et al. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass. Nat Commun 2019; 10: 2445. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hirata A, Kang LJ, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses. Science 2013; 341: 376-379. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Williams DB, Carter CB. Transmission Electron Microscopy. Boston: Springer, 1996, 3−17 [CrossRef] [Google Scholar]
- Haider M, Uhlemann S, Schwan E, et al. Electron microscopy image enhanced. Nature 1998; 392: 768-769. [Article] [CrossRef] [Google Scholar]
- Li J, Wang ZL, Hufnagel TC. Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Phy Rev B 2002; 65: 114201 [NASA ADS] [Google Scholar]
- Pennycook SJ. The impact of STEM aberration correction on materials science. Ultramicroscopy 2017; 180: 22-33. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rose HH. Historical aspects of aberration correction. J Electron Microsc 2009; 58: 77-85. [Article] [Google Scholar]
- Urban KW. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 2008; 321: 506-510. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Erni R, Rossell MD, Kisielowski C, et al. Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 2009; 102: 096101. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lentzen M, Jahnen B, Jia CL, et al. High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 2002; 92: 233-242. [Article] [CrossRef] [PubMed] [Google Scholar]
- Reddy KM, Liu P, Hirata A, et al. Atomic structure of amorphous shear bands in boron carbide. Nat Commun 2013; 4: 2483. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Huang PY, Kurasch S, Alden JS, et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 2013; 342: 224-227. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu F, Hirata A, Liu P, et al. Correlation between local structure order and spatial heterogeneity in a metallic glass. Phys Rev Lett 2017; 119: 215501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shi MM, Bao D, Li SJ, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv Energy Mater 2018; 8: 1800124. [Article] [Google Scholar]
- Wang Q, Liu CT, Yang Y, et al. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass. Phys Rev Lett 2011; 106: 215505. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhong L, Wang J, Sheng H, et al. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014; 512: 177-180. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Luo P, Cao CR, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates. Nat Commun 2018; 9: 1389. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shibata N, Pennycook SJ, Gosnell TR, et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 2004; 428: 730-733. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu G, Zheng X, Cui P,et al. A general synthesis approach for amorphous noble metal nanosheets. Nat Commun 2019; 10: 4855 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Toh CT, Zhang H, Lin J, et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 2020; 577: 199-203. [Article] arxiv:2105.08926 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lan S, Zhu L, Wu Z, et al. A medium-range structure motif linking amorphous and crystalline states. Nat Mater 2021; 20: 1347-1352. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gault B, Chiaramonti A, Cojocaru-Mirédin O, et al. Atom probe tomography. Nat Rev Methods Primers 2021; 1: 51-80. [Article] [CrossRef] [Google Scholar]
- Kelly TF, Larson DJ. Atom probe tomography 2012. Annu Rev Mater Res 2012; 42: 1−31 [NASA ADS] [CrossRef] [Google Scholar]
- Takamizawa H, Shimizu Y, Inoue K, et al. Origin of characteristic variability in metal-oxide-semiconductor field-effect transistors revealed by three-dimensional atom imaging. Appl Phys Lett 2011; 99: 133502. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gordon LM, Tran L, Joester D. Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 2012; 6: 10667-10675. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gordon LM, Joester D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 2011; 469: 194-197. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Miller MK, Shen TD, Schwarz RB. Atom probe tomography study of the decomposition of a bulk metallic glass. Intermetallics 2002; 10: 1047-1052. [Article] [CrossRef] [Google Scholar]
- Glade SC, Löffler JF, Bossuyt S, et al. Crystallization of amorphous Cu47Ti34Zr11Ni8. J Appl Phys 2001; 89: 1573. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Schnabel V, Köhler M, Evertz S, et al. Revealing the relationships between chemistry, topology and stiffness of ultrastrong Co-based metallic glass thin films: A combinatorial approach. Acta Mater 2016; 107: 213-219. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Du Q, Liu X, Fan H, et al. Reentrant glass transition leading to ultrastable metallic glass. Mater Today 2020; 34: 66-77. [Article] [Google Scholar]
- Dawson K, Foffi G, Fuchs M, et al. Higher-order glass-transition singularities in colloidal systems with attractive interactions. Phys Rev E 2000; 63: 011401. [Article] arxiv:cond-mat/0008358 [CrossRef] [Google Scholar]
- Pham KN, Puertas AM, Bergenholtz J, et al. Multiple glassy states in a simple model system. Science 2022; 296: 104-106. [Article] [Google Scholar]
- Jia Z, Wang Q, Sun L,et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Adv Funct Mater 2019; 29: 1807857 [CrossRef] [Google Scholar]
- Frank J. Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell. Albany: Springer, 2005 [Google Scholar]
- Midgley PA, Dunin-Borkowski RE. Electron tomography and holography in materials science. Nat Mater 2009; 8: 271-280. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ercius P, Alaidi O, Rames MJ, et al. Electron tomography: a three-dimensional analytic tool for hard and soft materials research. Adv Mater 2015; 27: 5638-5663. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li ZY, Young NP, Di Vece M, et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 2008; 451: 46-48. [Article] [CrossRef] [PubMed] [Google Scholar]
- van Aert S, Batenburg KJ, Rossell MD, et al. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 2011; 470: 374-377. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hwang J, Zhang JY, D’Alfonso AJ, et al. Three-dimensional imaging of individual dopant atoms in SrTiO3. Phys Rev Lett 2013; 111: 266101. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jia CL, Mi SB, Barthel J, et al. Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat Mater 2014; 13: 1044-1049. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Miao J, Ercius P, Billinge SJ. Atomic electron tomography: 3D structures without crystals. Science 2016; 353: 6589 [Google Scholar]
- Zhou J, Yang Y, Ercius P, et al. Atomic electron tomography in three and four dimensions. MRS Bull 2020; 45: 290-297. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lee E, Fahimian BP, Iancu CV, et al. Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography. J Struct Biol 2008; 164: 221-227. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu C, Chen CC, Du J, et al. Towards three-dimensional structural determination of amorphous materials at atomic resolution. Phys Rev B 2013; 88: 100201. [Article] [CrossRef] [Google Scholar]
- Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 1970; 29: 471-481. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Andersen AH, Kak AC. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imag 1984; 6: 81-94. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gilbert P. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 1972; 36: 105-117. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Haberfehlner G, Thaler P, Knez D, et al. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography. Nat Commun 2015; 6: 8779. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Goris B, De Beenhouwer J, De Backer A, et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett 2015; 15: 6996-7001. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Miao J, Förster F, Levi O. Equally sloped tomography with oversampling reconstruction. Phys Rev B 2005; 72: 052103. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mao Y, Fahimian BP, Osher SJ, et al. Development and optimization of regularized tomographic reconstruction algorithms utilizing equally-sloped tomography. IEEE Trans Image Process 2010; 19: 1259-1268. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zhao Y, Brun E, Coan P, et al. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. Proc Natl Acad Sci USA 2012; 109: 18290-18294. [Article] [Google Scholar]
- Fahimian BP, Zhao Y, Huang Z, et al. Radiation dose reduction in medical X-ray CT via Fourier-based iterative reconstruction. Med Phys 2013; 40: 031914. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pryor Jr. A, Yang Y, Rana A, et al. GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci Rep 2017; 7: 10409. [Article] [Google Scholar]
- Spurgeon SR, Ophus C, Jones L, et al. Towards data-driven next-generation transmission electron microscopy. Nat Mater 2021; 20: 274-279. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lee J, Jeong C, Lee T, et al. Direct observation of three-dimensional atomic structure of twinned metallic nanoparticles and their catalytic properties. Nano Lett 2022; 22: 665-672. [Article] arxiv:2109.14843 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hong J, Bae JH, Jo H, et al. Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature 2022; 603: 631-636. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pelz PM, Groschner C, Bruefach A, et al. Simultaneous successive twinning captured by atomic electron tomography. ACS Nano 2021; 16: 588-596. [Article] [Google Scholar]
- Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014; 343: 1339-1343. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang C, Duan H, Chen C, et al. Three-dimensional atomic structure of grain boundaries resolved by atomic-resolution electron tomography. Matter 2020; 3: 1999-2011. [Article] [CrossRef] [Google Scholar]
- Scott MC, Chen CC, Mecklenburg M, et al. Electron tomography at 2.4-ångström resolution. Nature 2012; 483: 444-447. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen CC, Zhu C, White ER, et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 2013; 496: 74-77. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xu R, Chen CC, Wu L, et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat Mater 2015; 14: 1099-1103. [Article] arxiv:1505.05938 [CrossRef] [PubMed] [Google Scholar]
- Collins S , Leary R , Midgley P , et al. Entropic comparison of atomic-resolution electron tomography of crystals and amorphous materials. Phys Rev Lett 2017; 119: 166101. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yao Y, Huang Z, Xie P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018; 359: 1489-1494. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Voyles P. Atomic structure of a glass imaged at last. Nature 2021; 592: 31-32. [Article] [Google Scholar]
- Jiang H, Shang T, Xian H, et al. Structures and functional properties of amorphous alloys. Small Struct 2021; 2: 2000057. [Article] [CrossRef] [Google Scholar]
- Elliott SR. Medium-range structural order in covalent amorphous solids. Nature 1991; 354: 445-452. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sells RL, Harris CW, Guth E. The pair distribution function for a one-dimensional gas. J Chem Phys 1953; 21: 1422-1423. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Steinhardt PJ, Nelson DR, Ronchetti M. Icosahedral bond orientational order in supercooled liquids. Phys Rev Lett 1981; 47: 1297-1300. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Steinhardt PJ, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B 1983; 28: 784-805. [Article] [CrossRef] [Google Scholar]
- Lechner W, Dellago C. Accurate determination of crystal structures based on averaged local bond order parameters. J Chem Phys 2008; 129: 114707. [Article] arxiv:0806.3345 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Finney JL. Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc London Ser A 1970; 319: 479−493 [NASA ADS] [CrossRef] [Google Scholar]
- Plourde BLT, Van Harlingen DJ, Saha N, et al. Vortex distributions near surface steps observed by scanning SQUID microscopy. Phys Rev B 2002; 66: 054529. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu XJ, Xu Y, Hui X, et al. Metallic liquids and glasses: atomic order and global packing. Phys Rev Lett 2010; 105: 155501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu ZW, Li MZ, Wang WH, et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nat Commun 2015; 6: 6035. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yu HB, Samwer K. Atomic mechanism of internal friction in a model metallic glass. Phys Rev B 2014; 90: 144201. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Maldonis JJ, Banadaki AD, Patala S, et al. Short-range order structure motifs learned from an atomistic model of a Zr50Cu45Al5 metallic glass. Acta Mater 2019; 175: 35-45. [Article] arxiv:1901.04124 [NASA ADS] [CrossRef] [Google Scholar]
- Miracle DB. A structural model for metallic glasses. Nat Mater 2004; 3: 697-702. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lu Z, Jiao W, Wang WH, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett 2014; 113: 045501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Muller DA, Kourkoutis LF, Murfitt M, et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 2008; 319: 1073-1076. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019; 574: 223-227. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Voyles PM. Informatics and data science in materials microscopy. Curr Opin Solid State Mater Sci 2017; 21: 141-158. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pelz PM, Rakowski A, Rangel DaCosta L, et al. A fast algorithm for scanning transmission electron microscopy imaging and 4D-STEM diffraction simulations. Microsc Microanal 2021; 27: 835-848. [Article] arxiv:2104.01496 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tian X, Kim DS, Yang S, et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat Mater 2020; 19: 867-873. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lee J, Jeong C, Yang Y. Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography. Nat Commun 2021; 12: 1962. [Article] arxiv:2008.12028 [CrossRef] [PubMed] [Google Scholar]
- Yang H, Jones L, Ryll H,et al. 4D STEM: high efficiency phase contrast imaging using a fast pixelated detector. J Phys Conf Ser 2015; 644: 012032 [NASA ADS] [CrossRef] [Google Scholar]
- Gao W, Addiego C, Wang H, et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 2019; 575: 480-484. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang H, Rutte RN, Jones L, et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat Commun 2016; 7: 12532. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gao S, Wang P, Zhang F, et al. Electron ptychographic microscopy for three-dimensional imaging. Nat Commun 2017; 8: 163. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Jiang Y, Shao YT, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 2021; 372: 826-831. [Article] arxiv:2101.00465 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jiang Y, Chen Z, Han Y, et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018; 559: 343-349. [Article] arxiv:1801.04630 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Midgley PA, Weyland M. 3D electron microscopy in the physical sciences: The development of z-contrast and eftem tomography. Ultramicroscopy 2003; 96: 413-431. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.