Open Access
Issue |
Natl Sci Open
Volume 2, Number 3, 2023
Special Topic: Glasses—Materials and Physics
|
|
---|---|---|
Article Number | 20220058 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1360/nso/20220058 | |
Published online | 20 April 2023 |
- Greer AL. Metallic glasses. Science 1995; 267: 1947–1953. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ma Y, Yang M, Yuan F, et al. A review on heterogeneous nanostructures: A strategy for superior mechanical properties in metals. Metals 2019; 9: 598. [Article] [CrossRef] [Google Scholar]
- Deb SK, Wilding M, Somayazulu M, et al. Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon. Nature 2001; 414: 528–530. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mishima O, Calvert LD, Whalley E. “Melting ice" I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 1984; 310: 393–395. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li FC, Liu T, Zhang JY, et al. Amorphous-nanocrystalline alloys: fabrication, properties, and applications. Mater Today Adv 2019; 4: 100027. [Article] [CrossRef] [Google Scholar]
- Wu G, Chan KC, Zhu L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 2017; 545: 80–83. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Su R, Neffati D, Cho J, et al. High-strength nanocrystalline intermetallics with room temperature deformability enabled by nanometer thick grain boundaries. Sci Adv 2021; 7: eabc8288. [Article] [Google Scholar]
- Wang Y, Li J, Hamza AV, et al. Ductile crystalline-amorphous nanolaminates. Proc Natl Acad Sci USA 2007; 104: 11155–11160. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hua P, Xia M, Onuki Y, et al. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nat Nanotechnol 2021; 16: 409–413. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li F, Zhao H, Yue Y, et al. Dual-phase super-strong and elastic ceramic. ACS Nano 2019; 13: 4191–4198. [Article] [CrossRef] [PubMed] [Google Scholar]
- He B, Hu B, Yen H, et al. High dislocation densit-induced large ductility in deformed and partitioned steels. Science 2017; 357: 1029–1032. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hua P, Chu K, Sun Q. Grain refinement and amorphization in nanocrystalline NiTi micropillars under uniaxial compression. Scrip Mater 2018; 154: 123–126. [Article] [Google Scholar]
- Pan Z, Rupert TJ. Amorphous intergranular films as toughening structural features. Acta Mater 2015; 89: 205–214. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xiao J, Deng C. Mitigating the Hall-Petch breakdown in nanotwinned Cu by amorphous intergranular films. Scripta Mater 2021; 194: 113682. [Article] [CrossRef] [Google Scholar]
- Neelav AH, Pal S, Deng C. Atomistic investigation of the deformation mechanisms in nanocrystalline Cu with amorphous intergranular films. J Appl Phys 2019; 126: 125101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li RN, Song HY, An MR, et al. Atomic-scale insight into mechanical properties and deformation behavior of crystalline/amorphous dual-phase high entropy alloys. Phys Lett A 2022; 446: 128272. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Naik SN, Walley SM. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals. J Mater Sci 2020; 55: 2661–2681. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 1951; 64: 747–753. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Petch N. The cleavage strength of polycrystals. J Iron Steel Inst 1953; 174: 25-28. [Google Scholar]
- Chokshi AH, Rosen A, Karch J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scripta Metall 1989; 23: 1679–1683. [Article] [Google Scholar]
- Schiøtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science 2003; 301: 1357–1359. [Article] [CrossRef] [PubMed] [Google Scholar]
- Trelewicz JR, Schuh CA. The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater 2007; 55: 5948–5958. [Article] [CrossRef] [Google Scholar]
- Song Z, Artyukhov VI, Yakobson BI, et al. Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett 2013; 13: 1829–1833. [Article] [CrossRef] [PubMed] [Google Scholar]
- Han J. The transition from an inverse pseudo Hall-Petch to a pseudo Hall-Petch behavior in nanocrystalline graphene. Carbon 2020; 161: 542–549. [Article] [Google Scholar]
- Rakib T, Saha S, Motalab M, et al. Atomistic representation of anomalies in the failure behaviour of nanocrystalline silicene. Sci Rep 2017; 7: 14629. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu J, Ji Y, Nai J, et al. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. CEnergy Environ Sci 2018; 11: 1736–1741. [Article] [Google Scholar]
- Wang X, Li Y, Wang S, et al. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv Energy Mater 2020; 10: 2000081. [Article] [Google Scholar]
- Zhao H, Chen X, Wang G, et al. Two-dimensional amorphous nanomaterials: synthesis and applications. D Mater 2019; 6: 032002. [Article] [NASA ADS] [Google Scholar]
- Ding J, Neffati D, Li Q, et al. Thick grain boundary induced strengthening in nanocrystalline Ni alloy. Nanoscale 2019; 11: 23449–23458. [Article] [CrossRef] [PubMed] [Google Scholar]
- Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 1995; 117: 1–19. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Nie Y, Liu J, Guo J, et al. Connecting glass-forming ability of binary mixtures of soft particles to equilibrium melting temperatures. Nat Commun 2020; 11: 3198. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pedersen UR, Schrøder TB, Dyre JC. Phase diagram of Kob-Andersen-type binary Lennard-Jones mixtures. Phys Rev Lett 2018; 120: 165501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tsai DH. The virial theorem and stress calculation in molecular dynamics. J Chem Phys 1979; 70: 1375–1382. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhou M. A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc R Soc Lond A 2003; 459: 2347–2392. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Pastor-Abia L, Caturla MJ, SanFabián E, et al. Stress-strain curves of aluminum nanowires: Fluctuations in the plastic regime and absence of hardening. Phys Rev B 2008; 78: 153410. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li X, Wei Y, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 2010; 464: 877–880. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Wang H, Zhu X, et al. A continuum model for dislocation dynamics incorporating Frank-Read sources and Hall-Petch relation in two dimensions. Int J Plast 2014; 60: 19–39. [Article] [CrossRef] [Google Scholar]
- Pande CS, Masumura RA, Armstrong RW. Pile-up based hall-petch relation for nanoscale materials. Nanostructured Mater 1993; 2: 323–331. [Article] [CrossRef] [Google Scholar]
- Zhang X, Aifantis KE. Interpreting the softening of nanomaterials through gradient plasticity. J Mater Res 2011; 26: 1399–1405. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Brink T, Albe K. From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour. Acta Mater 2018; 156: 205–214. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li X, Wei Y, Yang W, et al. Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Proc Natl Acad Sci USA 2009; 106: 16108–16113. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Guo D, Song S, Luo R, et al. Grain boundary sliding and amorphization are responsible for the reverse Hall-Petch relation in superhard nanocrystalline boron carbide. Phys Rev Lett 2018; 121: 145504. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Quek SS, Chooi ZH, Wu Z, et al. The inverse Hall-Petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis. J Mech Phys Solids 2016; 88: 252–266. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wei Y, Bower AF, Gao H. Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids. J Mech Phys Solids 2008; 56: 1460–1483. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ford JM, Wheeler J, Movchan AB. Computer simulation of grain-boundary diffusion creep. Acta Mater 2002; 50: 3941–3955. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Thomas S, Chen K, Han J, et al. Reconciling grain growth and shear-coupled grain boundary migration. Nat Commun 2017; 8: 1764. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li W, Peng Y, Zhang Y, et al. Shear-assisted grain coarsening in colloidal polycrystals. Proc Natl Acad Sci USA 2020; 117: 24055–24060. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chaikin P, Lubensky T, Witten T. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press, 1995 [CrossRef] [Google Scholar]
- Withers PJ, Bhadeshia HKDH. Residual stress. Part 1—Measurement techniques. Mater Sci Tech 2001; 17: 355–365. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li F, Liu T, Wang T, et al. Understanding yielding and the unusual ductile-brittle-ductile transition in Fe-based amorphous nanocrystalline alloy: A combined micromechanical and thermodynamic study. J Mech Phys Solids 2019; 132: 103681. [Article] [CrossRef] [Google Scholar]
- Zhang H, Han Y. Compression-induced polycrystal-glass transition in binary crystals. Phys Rev X 2018; 8: 041023. [Article] [NASA ADS] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.