Open Access
Review
Issue
Natl Sci Open
Volume 2, Number 4, 2023
Article Number 20220038
Number of page(s) 26
Section Information Sciences
DOI https://doi.org/10.1360/nso/20220038
Published online 06 February 2023
  • United Nations Industrial Development Organization (UNIDO). Towards hydrogen societies: Current advancements in hydrogen technology and pathways to deep decar-bonisation. 2019. https://www.unido.org/sites/default/files/files/2019-04/REPORT_Towards_Hydrogen_Societies.pdf. [Google Scholar]
  • Satyapal S. DOE hydrogen and fuel cell perspectives and overview of the international partnership for hydrogen and fuel cells in the economy (IPHE). 2020. https://www.energy.gov/sites/prod/files/2020/07/f77/hfto-satyapal-gabi-workshop-jul20.pdf. [Google Scholar]
  • Promislow K, St-Pierre J, Wetton B. A simple, analytic model of polymer electrolyte membrane fuel cell anode recirculation at operating power including nitrogen crossover. J Power Sources 2011; 196: 10050-10056.[Article] [CrossRef] [Google Scholar]
  • Matsuura T, Chen J, Siegel JB, et al. Degradation phenomena in PEM fuel cell with dead-ended anode. Int J Hydrogen Energy 2013; 38: 11346-11356.[Article] [CrossRef] [Google Scholar]
  • Raga C, Barrado A, Lazaro A, et al. Black-box model, identification technique and frequency analysis for PEM fuel cell with overshooted transient response. IEEE Trans Power Electron 2013; 29: 5334-5346.[Article] [Google Scholar]
  • Dhirde AM, Dale NV, Salehfar H, et al. Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy. IEEE Trans Energy Convers 2010; 25: 778-786.[Article] [Google Scholar]
  • Li Q, Chen W, Wang Y, et al. Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization. IEEE Trans Ind Electron 2010; 58: 2410-2419.[Article] [Google Scholar]
  • Askarzadeh A, Rezazadeh A. An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model. IEEE Trans Ind Electron 2012; 59: 3473-3480.[Article] [Google Scholar]
  • Mo ZJ, Zhu XJ, Wei LY, et al. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int J Energy Res 2006; 30: 585-597.[Article] [CrossRef] [Google Scholar]
  • Kim J, Lee J, Cho BH. Equivalent circuit modeling of PEM fuel cell degradation combined with a LFRC. IEEE Trans Ind Electron 2012; 60: 5086-5094.[Article] [Google Scholar]
  • da Costa LF, Watanabe EH, Rolim LGB. A control-oriented model of a PEM fuel cell stack based on NARX and NOE neural networks. IEEE Trans Ind Electron 2015; 62: 5155-5163.[Article] [Google Scholar]
  • Mann RF, Amphlett JC, Hooper MAI, et al. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J Power Sources 2000; 86: 173-180.[Article] [CrossRef] [Google Scholar]
  • Spiegel C. PEM Fuel Cell Modeling and Simulation Using MATLAB. Pittsburgh: Academic Press, 2011 [Google Scholar]
  • Gao F, Blunier B, Miraoui A, et al. A multiphysic dynamic 1-D model of a proton-exchange-membrane fuel-cell stack for real-time simulation. IEEE Trans Ind Electron 2009; 57: 1853-1864.[Article] [Google Scholar]
  • Gao F, Blunier B, Miraoui A. PEM fuel cell stack modeling for real-time emulation in hardware-in-the-loop applications. IEEE Trans Energy Convers 2010; 26: 184-194.[Article] [Google Scholar]
  • Gao F, Blunier B, Chrenko D, et al. Multirate fuel cell emulation with spatial reduced real-time fuel cell modeling. IEEE Trans Ind Applicat 2012; 48: 1127-1135.[Article] [Google Scholar]
  • Jung J-H, Ahmed S, Enjeti P. PEM fuel cell stack model development for real-time simulation applications. IEEE Trans Ind Electron 2010; 58: 4217-4231.[Article] [Google Scholar]
  • Grasser F, Rufer AC. A fully analytical PEM fuel cell system model for control applications. In: Proceedings of Conference Record of the 2006 IEEE Industry Applications Conference, 2006. 2162–2168 [Google Scholar]
  • Kunusch C, Puleston PF, Mayosky MA, et al. Control-oriented modeling and experimental validation of a PEMFC generation system. IEEE Trans Energy Convers 2011; 26: 851-861.[Article] [Google Scholar]
  • Rojas JD, Kunusch C, Ocampo-Martinez C, et al. Control-oriented thermal modeling methodology for water-cooled PEM fuel-cell-based systems. IEEE Trans Ind Electron 2015; 62: 5146-5154.[Article] [Google Scholar]
  • Ramos-Paja CA, Giral R, Martinez-Salamero L, et al. A PEM fuel-cell model featuring oxygen-excess-ratio estimation and power-electronics interaction. IEEE Trans Ind Electron 2009; 57: 1914-1924.[Article] [Google Scholar]
  • JemeÏJemei S, Hissel D, PéraPera MC, et al. A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans Ind Electron 2008; 55: 437-447.[Article] [Google Scholar]
  • Zhao D, Gao F, Bouquain D, et al. Sliding-mode control of an ultrahigh-speed centrifugal compressor for the air management of fuel-cell systems for automotive applications. IEEE Trans Veh Technol 2013; 63: 51-61.[Article] [Google Scholar]
  • Pukrushpan JT, Stefanopoulou AG, Peng H. Control of fuel cell breathing. IEEE Control Syst Mag 2004; 24: 30-46 [MathSciNet] [Google Scholar]
  • Pukrushpan JT, Peng H, Stefanopoulou AG. Simulation and analysis of transient fuel cell system performance based on a dynamic reactant flow model. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition, 2002. 637–648 [Google Scholar]
  • Pilloni A, Pisano A, Usai E. Observer-based air excess ratio control of a PEM fuel cell system via high-order sliding mode. IEEE Trans Ind Electron 2015; 62: 5236-5246.[Article] [Google Scholar]
  • Deng H, Li Q, Chen W, et al. High-order sliding mode observer based OER control for PEM fuel cell air-feed system. IEEE Trans Energy Convers 2017; 33: 232-244.[Article] [Google Scholar]
  • Ramos-Paja CA, Bordons C, Romero A, et al. Minimum fuel consumption strategy for PEM fuel cells. IEEE Trans Ind Electron 2008; 56: 685-696.[Article] [Google Scholar]
  • Chen J, Liu Z, Wang F, et al. Optimal oxygen excess ratio control for PEM fuel cells. IEEE Trans Contr Syst Technol 2017; 26: 1711-1721.[Article] [Google Scholar]
  • Hayati MR, Khayatian A, Dehghani M. Simultaneous optimization of net power and enhancement of PEM fuel cell lifespan using extremum seeking and sliding mode control techniques. IEEE Trans Energy Convers 2016; 31: 688-696.[Article] [Google Scholar]
  • Restrepo C, Konjedic T, Guarnizo C, et al. Simplified mathematical model for calculating the oxygen excess ratio of a PEM fuel cell system in real-time applications. IEEE Trans Ind Electron 2013; 61: 2816-2825.[Article] [Google Scholar]
  • Bao C, Ouyang M, Yi B. Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-II. Linear and adaptive nonlinear control. Int J Hydrogen Energy 2006; 31: 1897-1913.[Article] [Google Scholar]
  • Serra M, Aguado J, Ansede X, et al. Controllability analysis of decentralised linear controllers for polymeric fuel cells. J Power Sources 2005; 151: 93-102.[Article] [CrossRef] [Google Scholar]
  • Zhang J, Liu G, Yu W, et al. Adaptive control of the airflow of a PEM fuel cell system. J Power Sources 2008; 179: 649-659.[Article] [CrossRef] [Google Scholar]
  • Laghrouche S, Harmouche M, Ahmed FS, et al. Control of PEMFC air-feed system using Lyapunov-based robust and adaptive higher order sliding mode control. IEEE Trans Contr Syst Technol 2014; 23: 1594-1601.[Article] [Google Scholar]
  • Wang Y, Wang Y, Xu J, et al. Observer-based discrete adaptive neural network control for automotive PEMFC air-feed subsystem. IEEE Trans Veh Technol 2021; 70: 3149-3163.[Article] [CrossRef] [Google Scholar]
  • Bordons C, Arce A, Del Real A J. Constrained predictive control strategies for PEM fuel cells. In: Proceedings of 2006 American Control Conference, 2006 [Google Scholar]
  • Arce A, Ramirez D R, Del Real A, et al. Constrained explicit predictive control strategies for PEM fuel cell systems. In: Proceedings of the 46th IEEE Conference on Decision and Control, 2007. 6088–6093 [Google Scholar]
  • Williams JG, Liu G, Chai S, et al. Intelligent control for improvements in PEM fuel cell flow performance. Int J Autom Comput 2008; 5: 145-151.[Article] [CrossRef] [Google Scholar]
  • Tekin M, Hissel D, Pera MC, et al. Energy-management strategy for embedded fuel-cell systems using fuzzy logic. IEEE Trans Ind Electron 2007; 54: 595-603.[Article] [Google Scholar]
  • Rgab O, Yu DL, Gomm JB. Polymer electrolyte membrane fuel cell control with feed-forward and feedback strategy. Int J Eng Sci Tech 2010; 2: 56-66.[Article] [Google Scholar]
  • Sun T, Cao G-Y, Zhu X-J. Nonlinear modeling of PEMFC based on neural networks identification. J Zheijang Univ-Sci A 2005; 6: 365-370.[Article] [Google Scholar]
  • Almeida PE, Simoes MG. Neural optimal control of PEM-fuel cells with parametric CMAC networks. In: Proceedings of the 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003. 723–730 [Google Scholar]
  • Tirnovan R, Giurgea S. Efficiency improvement of a PEMFC power source by optimization of the air management. Int J Hydrogen Energy 2012; 37: 7745-7756.[Article] [CrossRef] [Google Scholar]
  • Bizon N. Improving the PEMFC energy efficiency by optimizing the fueling rates based on extremum seeking algorithm. Int J Hydrogen Energy 2014; 39: 10641-10654.[Article] [CrossRef] [Google Scholar]
  • Bhatia D, Sabharwal M, Duelk C. Analytical model of a membrane humidifier for polymer electrolyte membrane fuel cell systems. Int J Heat Mass Transfer 2013; 58: 702-717.[Article] [CrossRef] [Google Scholar]
  • Headley AJ, Chen D. Critical control volume sizing for improved transient thermal modeling of PEM fuel cells. Int J Hydrogen Energy 2015; 40: 7762-7768.[Article] [CrossRef] [Google Scholar]
  • Karnik AY, Sun J, Stefanopoulou AG, et al. Humidity and pressure regulation in a PEM fuel cell using a gain-scheduled static feedback controller. IEEE Trans Contr Syst Technol 2008; 17: 283-297.[Article] [Google Scholar]
  • Liu Z, Chen J, Chen S, et al. Modeling and control of cathode air humidity for PEM fuel cell systems. IFAC-PapersOnLine 2017; 50: 4751-4756.[Article] [CrossRef] [Google Scholar]
  • Chen J, Siegel JB, Matsuura T, et al. Carbon corrosion in PEM fuel cell dead-ended anode operations. J Electrochem Soc 2011; 158: B1164.[Article] [CrossRef] [Google Scholar]
  • Zhu Y, Li Y. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system. J Power Sources 2009; 191: 510-519.[Article] [CrossRef] [Google Scholar]
  • He J, Choe SY, Hong CO. Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell. J Power Sources 2008; 185: 973-984.[Article] [CrossRef] [Google Scholar]
  • Berning T, Djilali N. A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell. J Electrochem Soc 2003; 150: A1589.[Article] [CrossRef] [Google Scholar]
  • Ebadighajari A, Homayouni H, DeVaal J, et al. Model predictive control of polymer electrolyte membrane fuel cell with dead-end anode and periodic purging. In: Proceedings of 2016 IEEE Conference on Control Applications (CCA), 2016. 1500–1505 [Google Scholar]
  • Yang CW, Chen YS. A mathematical model to study the performance of a proton exchange membrane fuel cell in a dead-ended anode mode. Appl Energy 2014; 130: 113-121.[Article] [CrossRef] [Google Scholar]
  • Okedi TI, Meyer Q, Hunter HMA, et al. Development of a polymer electrolyte fuel cell dead-ended anode purge strategy for use with a nitrogen-containing hydrogen GAS supply. Int J Hydrogen Energy 2017; 42: 13850-13859.[Article] [CrossRef] [Google Scholar]
  • Liu Z, Chen J, Liu H, et al. Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems. Appl Energy 2020; 275: 115110.[Article] [CrossRef] [Google Scholar]
  • Asghari S, Akhgar H, Imani BF. Design of thermal management subsystem for a 5kW polymer electrolyte membrane fuel cell system. J Power Sources 2011; 196: 3141-3148.[Article] [CrossRef] [Google Scholar]
  • Vasu G, Tangirala AK. Control-orientated thermal model for proton-exchange membrane fuel cell systems. J Power Sources 2008; 183: 98-108.[Article] [CrossRef] [Google Scholar]
  • Rao Z, Wang S. A review of power battery thermal energy management. Renew Sustain Energy Rev 2011; 15: 4554-4571.[Article] [CrossRef] [Google Scholar]
  • Shahsavari S, Desouza A, Bahrami M, et al. Thermal analysis of air-cooled PEM fuel cells. Int J Hydrogen Energy 2012; 37: 18261-18271.[Article] [CrossRef] [Google Scholar]
  • Yu S, Jung D. Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area. Renew Energy 2008; 33: 2540-2548.[Article] [CrossRef] [Google Scholar]
  • Kandidayeni M, Macias FA, Boulon L, et al. Efficiency enhancement of an open cathode fuel cell through a systemic management. IEEE Trans Veh Technol 2019; 68: 11462-11472.[Article] [CrossRef] [Google Scholar]
  • Kandidayeni M, Macias A, Boulon L, et al. Efficiency upgrade of hybrid fuel cell vehicles’ energy management strategies by online systemic management of fuel cell. IEEE Trans Ind Electron 2020; 68: 4941-4953.[Article] [Google Scholar]
  • Hasani M, Rahbar N. Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell—An experimental study. Int J Hydrogen Energy 2015; 40: 15040-15051.[Article] [CrossRef] [Google Scholar]
  • Zhang B, Lin F, Zhang C, et al. Design and implementation of model predictive control for an open-cathode fuel cell thermal management system. Renew Energy 2020; 154: 1014-1024.[Article] [CrossRef] [Google Scholar]
  • Han J, Yu S, Yi S. Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm. Int J Hydrogen Energy 2017; 42: 4328-4341.[Article] [CrossRef] [Google Scholar]
  • Huang W, Qahouq JA. An online battery impedance measurement method using DC-DC power converter control. IEEE Trans Ind Electron 2014; 61: 5987-5995.[Article] [Google Scholar]
  • Yan C, Chen J, Liu H, et al. Model-based fault tolerant control for the thermal management of PEMFC systems. IEEE Trans Ind Electron 2019; 67: 2875-2884.[Article] [Google Scholar]
  • O’Keefe D, El-Sharkh MY, Telotte JC, et al. Temperature dynamics and control of a water-cooled fuel cell stack. J Power Sources 2014; 256: 470-478.[Article] [CrossRef] [Google Scholar]
  • Koç Y, Birbir Y, Bodur H. Non-isolated high step-up DC/DC converters—An overview. Alexandria Eng J 2022; 61: 1091-1132.[Article] [CrossRef] [Google Scholar]
  • Liu H, Hu H, Wu H, et al. Overview of high-step-up coupled-inductor boost converters. IEEE J Emerg Sel Top Power Electron 2016; 4: 689-704.[Article] [CrossRef] [Google Scholar]
  • Zhang Y, Shi J, Zhou L, et al. Wide input-voltage range boost three-level DC-DC converter with quasi-Z source for fuel cell vehicles. IEEE Trans Power Electron 2016; 32: 6728-6738.[Article] [Google Scholar]
  • Wang P, Zhou L, Zhang Y, et al. Input-parallel output-series DC-DC boost converter with a wide input voltage range, for fuel cell vehicles. IEEE Trans Veh Technol 2017; 66: 7771-7781.[Article] [CrossRef] [Google Scholar]
  • Zhang Y, Fu C, Sumner M, et al. A wide input-voltage range quasi-z-source boost DC-DC converter with high-voltage gain for fuel cell vehicles. IEEE Trans Ind Electron 2017; 65: 5201-5212.[Article] [Google Scholar]
  • Zhang Y, Zhou L, Sumner M, et al. Single-switch, wide voltage-gain range, boost DC-DC converter for fuel cell vehicles. IEEE Trans Veh Technol 2017; 67: 134-145.[Article] [Google Scholar]
  • Zhang Y, Liu H, Li J, et al. DC-DC boost converter with a wide input range and high voltage gain for fuel cell vehicles. IEEE Trans Power Electron 2018; 34: 4100-4111.[Article] [Google Scholar]
  • Bi H, Wang P, Che Y. A capacitor clamped H-type boost DC-DC converter with wide voltage-gain range for fuel cell vehicles. IEEE Trans Veh Technol 2018; 68: 276-290.[Article] [Google Scholar]
  • Wahdame B, Girardot L, Hissel D, et al. Impact of power converter current ripple on the durability of a fuel cell stack. In: Proceedings of 2008 IEEE International Symposium on Industrial Electronics, 2008. 1495–1500 [Google Scholar]
  • Wahdame B, Candusso D, FranÇois X, et al. Analysis of a fuel cell durability test based on design of experiment approach. IEEE Trans On Energy Convers 2008; 23: 1093-1104.[Article] [Google Scholar]
  • Sha D, Xu Y, Zhang J, et al. Current-fed hybrid dual active bridge DC-DC converter for a fuel cell power conditioning system with reduced input current ripple. IEEE Trans Ind Electron 2017; 64: 6628-6638.[Article] [Google Scholar]
  • Birth S. DC/DC converter with reduced ripple. International Patent WO2017108033A1, Jun. 29, 2017 [Google Scholar]
  • Li X, Li J, Xu L, et al. Performance analysis of proton-exchange membrane fuel cell stacks used in Beijing urban-route buses trial project. Int J Hydrogen Energy 2010; 35: 3841-3847.[Article] [CrossRef] [Google Scholar]
  • Post M, Eudy L. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report. Technical Report, National Renewable Energy Laboratory, Golden, CO (United States), 2014 [Google Scholar]
  • Fouquet N, Doulet C, Nouillant C, et al. Model based PEM fuel cell state-of-health monitoring via ac impedance measurements. J Power Sources 2006; 159: 905-913.[Article] [CrossRef] [Google Scholar]
  • Gebregergis A, Pillay P, Rengaswamy R. PEMFC fault diagnosis, modeling, and mitigation. IEEE Trans Ind Applicat 2010; 46: 295-303.[Article] [Google Scholar]
  • Zheng Z, Péra MC, Hissel D, et al. A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of proton exchange membrane fuel cell stacks. J Power Sources 2014; 271: 570-581.[Article] [CrossRef] [Google Scholar]
  • Hissel D, Candusso D, Harel F. Fuzzy-clustering durability diagnosis of polymer electrolyte fuel cells dedicated to transportation applications. IEEE Trans Veh Technol 2007; 56: 2414-2420.[Article] [CrossRef] [Google Scholar]
  • Homayouni H, DeVaal J, Golnaraghi F, et al. Voltage reduction technique for use with electrochemical impedance spectroscopy in high-voltage fuel cell and battery systems. IEEE Trans Transp Electrific 2018; 4: 418-431.[Article] [CrossRef] [Google Scholar]
  • Islam SMR, Park SY. Precise online electrochemical impedance spectroscopy strategies for Li-ion batteries. IEEE Trans Ind Applicat 2020; 56: 1661-1669.[Article] [Google Scholar]
  • Ordonez M, Sonnaillon MO, Quaicoe JE, et al. An embedded frequency response analyzer for fuel cell monitoring and characterization. IEEE Trans Ind Electron 2009; 57: 1925-1934.[Article] [Google Scholar]
  • Yan C, Chen J, Liu H, et al. Health management for PEM fuel cells based on an active fault tolerant control strategy. IEEE Trans Sustain Energy 2020; 12: 1311-1320.[Article] [Google Scholar]
  • Schmittinger W, Vahidi A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 2008; 180: 1-14.[Article] [CrossRef] [Google Scholar]
  • Sugiura T, Tanida A, Tamura K. Efficiency improvement of boost converter for fuel cell bus by silicon carbide diodes. SAE Int J Alt Power 2016; 5: 294-298.[Article] [CrossRef] [Google Scholar]
  • Vahidi A, Stefanopoulou A, Peng H. Current management in a hybrid fuel cell power system: a model-predictive control approach. IEEE Trans Contr Syst Technol 2006; 14: 1047-1057.[Article] [Google Scholar]
  • Sedghisigarchi K, Feliachi A. Impact of fuel cells on load-frequency control in power distribution systems. IEEE Trans Energy Convers 2006; 21: 250-256.[Article] [Google Scholar]
  • Garcia-Torres F, Valverde L, Bordons C. Optimal load sharing of hydrogen-based microgrids with hybrid storage using model-predictive control. IEEE Trans Ind Electron 2016; 63: 4919-4928.[Article] [Google Scholar]
  • Nojavan S, Akbari-Dibavar A, Farahmand-Zahed A, et al. Risk-constrained scheduling of a CHP-based microgrid including hydrogen energy storage using robust optimization approach. Int J Hydrogen Energy 2020; 45: 32269-32284.[Article] [CrossRef] [Google Scholar]
  • Zhang Y, Campana PE, Lundblad A, et al. Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation. Appl Energy 2017; 201: 397-411.[Article] [CrossRef] [Google Scholar]
  • Wang Y, Sun Z, Chen Z. Development of energy management system based on a rule-based power distribution strategy for hybrid power sources. Energy 2019; 175: 1055-1066.[Article] [CrossRef] [Google Scholar]
  • Liu J, Xu Z, Wu J, et al. Optimal planning of distributed hydrogen-based multi-energy systems. Appl Energy 2021; 281: 116107.[Article] [CrossRef] [Google Scholar]
  • Mahmoodi M, Shamsi P, Fahimi B. Economic dispatch of a hybrid microgrid with distributed energy storage. IEEE Trans Smart Grid 2015; 6: 2607-2614.[Article] [CrossRef] [Google Scholar]
  • Wu H, Liu X, Ding M. Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm. Int J Electrical Power Energy Syst 2014; 63: 336-346.[Article] [CrossRef] [Google Scholar]
  • Garcia-Torres F, Bordons C. Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control. IEEE Trans Ind Electron 2015; 62: 5195-5207.[Article] [Google Scholar]
  • Parisio A, Wiezorek C, Kyntaja T, et al. Cooperative MPC-based energy management for networked microgrids. IEEE Trans Smart Grid 2017; 8: 3066-3074.[Article] [CrossRef] [Google Scholar]
  • Garcia-Torres F, Bordons C, Ridao MA. Optimal economic schedule for a network of microgrids with hybrid energy storage system using distributed model predictive control. IEEE Trans Ind Electron 2019; 66: 1919-1929.[Article] [Google Scholar]
  • Velasquez MA, Barreiro-Gomez J, Quijano N, et al. Intra-hour microgrid economic dispatch based on model predictive control. IEEE Trans Smart Grid 2020; 11: 1968-1979.[Article] [Google Scholar]
  • Tang Z, Hill DJ, Liu T. A novel consensus-based economic dispatch for microgrids. IEEE Trans Smart Grid 2018; 9: 3920-3922.[Article] [CrossRef] [Google Scholar]
  • Ma WJ, Wang J, Gupta V, et al. Distributed energy management for networked microgrids using online ADMM with regret. IEEE Trans Smart Grid 2018; 9: 847-856.[Article] [CrossRef] [Google Scholar]
  • Du Y, Wang Z, Liu G, et al. A cooperative game approach for coordinating multi-microgrid operation within distribution systems. Appl Energy 2018; 222: 383-395.[Article] [CrossRef] [Google Scholar]
  • Kou P, Liang D, Gao L. Distributed EMPC of multiple microgrids for coordinated stochastic energy management. Appl Energy 2017; 185: 939-952.[Article] [CrossRef] [Google Scholar]
  • Romero-Quete D, Cañizares CA. An affine arithmetic-based energy management system for isolated microgrids. IEEE Trans Smart Grid 2019; 10: 2989-2998.[Article] [CrossRef] [Google Scholar]
  • Shuai H, Fang J, Ai X, et al. Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming. IEEE Trans Smart Grid 2019; 10: 2440-2452.[Article] [Google Scholar]
  • Xiang Y, Liu J, Liu Y. Robust energy management of microgrid with uncertain renewable generation and load. IEEE Trans Smart Grid 2016; 7: 1034-1043.[Article] [Google Scholar]
  • Gabrielli P, Fürer F, Mavromatidis G, et al. Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis. Appl Energy 2019; 238: 1192-1210.[Article] [CrossRef] [Google Scholar]
  • Peng C, Xie P, Pan L, et al. Flexible robust optimization dispatch for hybrid wind/photovoltaic/hydro/thermal power system. IEEE Trans Smart Grid 2016; 7: 751-762.[Article] [Google Scholar]
  • Foruzan E, Soh LK, Asgarpoor S. Reinforcement learning approach for optimal distributed energy management in a microgrid. IEEE Trans Power Syst 2018; 33: 5749-5758.[Article] [Google Scholar]
  • Liu W, Zhuang P, Liang H, et al. Distributed economic dispatch in microgrids based on cooperative reinforcement learning. IEEE Trans Neural Netw Learn Syst 2018; 29: 2192-2203.[Article] [Google Scholar]
  • Du Y, Li F. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning. IEEE Trans Smart Grid 2020; 11: 1066-1076.[Article] [Google Scholar]
  • Garcia JE, Herrera DF, Boulon L, et al. Power sharing for efficiency optimisation into a multi fuel cell system. In: Proceedings of IEEE 23rd International Symposium on Industrial Electronics, 2014. 218–223 [Google Scholar]
  • Wang T, Li Q, Yin L, et al. Hydrogen consumption minimization method based on the online identification for multi-stack PEMFCs system. Int J Hydrogen Energy 2019; 44: 5074-5081.[Article] [CrossRef] [Google Scholar]
  • Han Y, Li Q, Wang T, et al. Multisource coordination energy management strategy based on SOC consensus for a PEMFC-battery-supercapacitor hybrid tramway. IEEE Trans Veh Technol 2018; 67: 296-305.[Article] [CrossRef] [Google Scholar]
  • Wang T, Li Q, Yang H, et al. Adaptive current distribution method for parallel-connected PEMFC generation system considering performance consistency. Energy Convers Manage 2019; 196: 866-877.[Article] [CrossRef] [Google Scholar]
  • Meng X, Li Q, Huang T, et al. A distributed performance consensus control strategy of multistack PEMFC generation system for hydrogen EMU trains. IEEE Trans Ind Electron 2021; 68: 8207-8218.[Article] [Google Scholar]
  • Bahrami M, Martin JP, Maranzana G, et al. Design and modeling of an equalizer for fuel cell energy management systems. IEEE Trans Power Electron 2019; 34: 10925-10935.[Article] [Google Scholar]
  • Xu Y, Dong Z, Li Z, et al. Distributed optimization for integrated frequency regulation and economic dispatch in microgrids. IEEE Trans Smart Grid 2021; 12: 4595-4606.[Article] [Google Scholar]
  • Li Z, Cheng Z, Liang J, et al. Distributed event-triggered secondary control for economic dispatch and frequency restoration control of droop-controlled AC microgrids. IEEE Trans Sustain Energy 2020; 11: 1938-1950.[Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.