Issue |
Natl Sci Open
Volume 2, Number 4, 2023
Special Topic: Two-dimensional Materials and Devices
|
|
---|---|---|
Article Number | 20220060 | |
Number of page(s) | 10 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20220060 | |
Published online | 09 June 2023 |
- Wang G, Chernikov A, Glazov MM, et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev Mod Phys 2018; 90: 021001. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon 2016; 10: 216-226. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater 2015; 14: 301-306. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu S, Buckley S, Schaibley JR, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015; 520: 69-72. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Baugher BWH, Churchill HOH, Yang Y, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nanotech 2014; 9: 262-267. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ciarrocchi A, Tagarelli F, Avsar A, et al. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat Rev Mater 2022; 7: 449-464. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chakraborty SK, Kundu B, Nayak B, et al. Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices. iScience 2022; 25: 103942. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jin C, Ma EY, Karni O, et al. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotech 2018; 13: 994-1003. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rivera P, Yu H, Seyler KL, et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat Nanotech 2018; 13: 1004-1015. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mak KF, Shan J. Opportunities and challenges of interlayer exciton control and manipulation. Nat Nanotech 2018; 13: 974-976. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Islam MN, Hillman RL, Miller DAB, et al. Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides. Appl Phys Lett 1987; 50: 1098-1100. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Rivera P, Schaibley JR, Jones AM, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun 2015; 6: 6242[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Miller B, Steinhoff A, Pano B, et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett 2017; 17: 5229-5237. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jauregui LA, Joe AY, Pistunova K, et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 2019; 366: 870-875. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Z, Rhodes DA, Watanabe K, et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019; 574: 76-80. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li JIA, Taniguchi T, Watanabe K, et al. Excitonic superfluid phase in double bilayer graphene. Nat Phys 2017; 13: 751-755. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fogler MM, Butov LV, Novoselov KS. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat Commun 2014; 5: 4555. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Watanabe K, Taniguchi T, et al. Quantum Hall drag of exciton condensate in graphene. Nat Phys 2017; 13: 746-750. [Article] [CrossRef] [Google Scholar]
- Ma L, Nguyen PX, Wang Z. Strongly correlated excitonic insulator in atomic double layers. Nature 2021; 598: 585-589[Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Z, Regan EC, Wang D. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and Moiré WS2/WSe2. Nat Phys 2022; 18: 1214-1220[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen D, Lian Z, Huang X. Excitonic insulator in a heterojunction moiré superlattice. Nat Phys 2022; 18: 1171-1176[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Unuchek D, Ciarrocchi A, Avsar A, et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 2018; 560: 340-344. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Du L, Yang S, et al. Interlayer exciton complexes in bilayer MoS2. Phys Rev B 2022; 105: L041411. [Article] [CrossRef] [Google Scholar]
- Huang Z, Zhao Y, Bo T, et al. Spatially indirect intervalley excitons in bilayer WSe2. Phys Rev B 2022; 105: L041409. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Altaiary MM, Liu E, Liang CT, et al. Electrically switchable intervalley excitons with strong two-phonon scattering in bilayer WSe2. Nano Lett 2022; 22: 1829-1835. [Article] [Google Scholar]
- Rivera P, Seyler KL, Yu H, et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016; 351: 688-691. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Arora A, Drüppel M, Schmidt R, et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat Commun 2017; 8: 639. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jin C, Regan EC, Wang D, et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat Phys 2019; 15: 1140-1144. [Article] [CrossRef] [Google Scholar]
- Liu GB, Xiao D, Yao Y, et al. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev 2015; 44: 2643-2663. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sung J, Zhou Y, Scuri G, et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat Nanotechnol 2020; 15: 750-754. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Du L, Zhang T, Liao M. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. Phys Rev B 2017; 97: 165410[Article] [Google Scholar]
- Chen P, Cheng C, Shen C. Band evolution of two-dimensional transition metal dichalcogenides under electric fields. Appl Phys Lett 2019; 115: 083104[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Leisgang N, Shree S, Paradisanos I, et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat Nanotechnol 2020; 15: 901-907. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sponfeldner L, Leisgang N, Shree S, et al. Capacitively-coupled and inductively-coupled excitons in bilayer MoS2. arXiv: 2108.04248, 20212108.04248 [Google Scholar]
- Ud Din N, Turkowski V, Rahman TS. Ultrafast charge dynamics and photoluminescence in bilayer MoS2. 2D Mater 2021; 8: 025018. [Article] [Google Scholar]
- Zhao W, Ribeiro RM, Toh M, et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett 2013; 13: 5627-5634. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kozawa D, Kumar R, Carvalho A, et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat Commun 2014; 5: 4543. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hong J, Li K, Jin C, et al. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional MoS2. Phys Rev B 2016; 93: 075440. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wakabayashi N, Smith HG, Nicklow RM. Lattice dynamics of hexagonal MoS2 studied by neutron scattering. Phys Rev B 1975; 12: 659-663. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bhatnagar M, Woźniak T, Kipczak Ł, et al. Temperature induced modulation of resonant Raman scattering in bilayer 2H-MoS2. arXiv: 2204.09034, 2022 [Google Scholar]
- Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater 2013; 12: 207-211. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ross JS, Wu S, Yu H, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 2013; 4: 1474. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu B, Chen X, Cui X. Exciton binding energy of monolayer WS2. Sci Rep 2015; 5: 9218. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu HJ, Jiao L, Xie L, et al. Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater 2015; 2: 034004. [Article] [Google Scholar]
- Jones AM, Yu H, Ghimire NJ, et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotech 2013; 8: 634-638. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.