Issue |
Natl Sci Open
Volume 2, Number 5, 2023
Special Topic: Gene Editing towards Translation
|
|
---|---|---|
Article Number | 20230030 | |
Number of page(s) | 17 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20230030 | |
Published online | 21 September 2023 |
- Gibson T. Zoografting: A curious chapter in the history of plastic surgery. Br J Plast Surg 1955; 8: 234–242 [CrossRef] [PubMed] [Google Scholar]
- Roux FA, Saï P, Deschamps JY. Xenotransfusions, past and present. Xenotransplantation 2007; 14: 208-216. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cooper DKC. A brief history of cross-species organ transplantation. Baylor University Med Center Proc 2012; 25: 49-57. [Article] [CrossRef] [PubMed] [Google Scholar]
- Stabzl TE, Marchioro TL, Peters GN, et al. Renal heterotransplantation from baboon to man. Transplantation 1964; 2: 752-776. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bailey LL. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA 1985; 254: 3321-3329. [Article] [CrossRef] [PubMed] [Google Scholar]
- Makowka L, Cramer DV, Hoffman A, et al. The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure. Transplantation 1995; 59: 1654-1659. [Article] [CrossRef] [PubMed] [Google Scholar]
- Makowka L, Wu GD, Hoffman A, et al. Immunohistopathologic lesions associated with the rejection of a pig-to-human liver xenograft. Transplant Proc 1994; 26: 1074–1075 [PubMed] [Google Scholar]
- Chen G, Qian H, Starzl T, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 2005; 11: 1295-1298. [Article] [CrossRef] [PubMed] [Google Scholar]
- Elisseeff J, Badylak SF, Boeke JD. Immune and genome engineering as the future of transplantable tissue. N Engl J Med 2021; 385: 2451-2462. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou Q, Li T, Wang K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13: 928173. [Article] [CrossRef] [PubMed] [Google Scholar]
- Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359: 938-949. [Article] [CrossRef] [PubMed] [Google Scholar]
- Houser SL, Kuwaki K, Knosalla C, et al. Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation 2004; 11: 416-425. [Article] [CrossRef] [PubMed] [Google Scholar]
- Varela ID, Mozo PS, Cortés AC, et al. Cross-reactivity between swine leukocyte antigen and human anti-HLA-specific antibodies in sensitized patients awaiting renal transplantation. J Am Soc Nephrol 2003; 14: 2677-2683. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Cooper DKC, Wang H, et al. Potential pathological role of pro-inflammatory cytokines (IL-6, TNF-α, and IL-17) in xenotransplantation. Xenotransplantation 2019; 26: e12502. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lin CC, Ezzelarab M, Shapiro R, et al. Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am J Transplant 2010; 10: 1556-1568. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lai L, Kolber-Simonds D, Park KW, et al. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002; 295: 1089-1092. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mohiuddin MM, Singh AK, Corcoran PC, et al. One-year heterotopic cardiac xenograft survival in a pig to baboon model. Am J Transplant 2014; 14: 488-489. [Article] [CrossRef] [PubMed] [Google Scholar]
- Griffith BP, Goerlich CE, Singh AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med 2022; 387: 35-44. [Article] [CrossRef] [PubMed] [Google Scholar]
- Montgomery RA, Stern JM, Lonze BE, et al. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med 2022; 386: 1889-1898. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Cooper DKC, Dou K. Genetically-engineered pig-to-human organ transplantation: A new beginning. Sci Bull 2022; 67: 1827-1829. [Article] [CrossRef] [PubMed] [Google Scholar]
- Carrier AN, Verma A, Mohiuddin M, et al. Xenotransplantation: A new era. Front Immunol 2022; 13: 900594. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dou KF, Zhang X. Reflection on 10 problems of clinical xenotransplantation. Organ Transplant 2022; 13: 411–416 [Google Scholar]
- Cooper DKC. The 2021 IXA Keith Reemtsma lecture: Moving xenotransplantation to the clinic. Xenotransplantation 2022; 29: e12723. [Article] [CrossRef] [PubMed] [Google Scholar]
- Galili U, Shohet SB, Kobrin E, et al. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells.. J Biol Chem 1988; 263: 17755-17762. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sykes M, Sachs DH. Progress in xenotransplantation: Overcoming immune barriers. Nat Rev Nephrol 2022; 18: 745-761. [Article] [CrossRef] [PubMed] [Google Scholar]
- Parker W, Bruno D, Holzknecht ZE, et al. Characterization and affinity isolation of xenoreactive human natural antibodies. J Immunol 1994; 153: 3791–3803 [Google Scholar]
- Xu H, Edwards N, Chen JM, et al. Age-related development of human anti-pig xenoantibody. J Thoracic Cardiovasc Surg 1995; 110: 1023-1029. [Article] [Google Scholar]
- Varki A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol 2001; 33: 54–69 [CrossRef] [Google Scholar]
- Byrne GW, Du Z, Stalboerger P, et al. Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 2014; 21: 543-554. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hara H, Nguyen H, Wang ZY, et al. Evidence that sensitization to triple-knockout pig cells will not be detrimental to subsequent allotransplantation. Xenotransplantation 2021; 28: e12701. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yoon S, Lee S, Park C, et al. An efficacious transgenic strategy for triple knockout of xeno-reactive antigen genes GGTA1, CMAH, and B4GALNT2 from jeju native pigs. Vaccines 2022; 10: 1503. [Article] [CrossRef] [PubMed] [Google Scholar]
- Meier RPH, Muller YD, Balaphas A, et al. Xenotransplantation: Back to the future?. Transpl Int 2018; 31: 465-477. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rus H, Cudrici C, Niculescu F. The role of the complement system in innate immunity. IR 2005; 33: 103-112. [Article] [CrossRef] [PubMed] [Google Scholar]
- Harris CL, Pettigrew DM, Lea SM, et al. Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay. J Immunol 2007; 178: 352-359. [Article] [Google Scholar]
- Weinstock C. Association of blood group antigen CD59 with disease. Transfus Med Hemother 2022; 49: 13-24. [Article] [Google Scholar]
- Jeong YH, Park CH, Jang GH, et al. Production of multiple transgenic yucatan miniature pigs expressing human complement regulatory factors, human CD55, CD59, and H-transferase genes. Plos One 2013; 8: e63241 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg 2015; 23: 296-300. [Article] [CrossRef] [PubMed] [Google Scholar]
- Roussel JC, Moran CJ, Salvaris EJ, et al. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant 2008; 8: 1101-1112. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 2016; 7: 11138. [Article] [CrossRef] [PubMed] [Google Scholar]
- Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 2018; 564: 430-433. [Article] [CrossRef] [PubMed] [Google Scholar]
- Singh AK, Chan JL, DiChiacchio L, et al. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation 2019; 26: e12465. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yamamoto T, Hara H, Iwase H, et al. The final obstacle to successful pre-clinical xenotransplantation?. Xenotransplantation 2020; 27: e12596. [Article] [CrossRef] [PubMed] [Google Scholar]
- Salvaris EJ, Moran CJ, Roussel JC, et al. Pig endothelial protein C receptor is functionally compatible with the human protein C pathway. Xenotransplantation 2020; 27: e12557. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mohan Rao LV, Esmon CT, Pendurthi UR. Endothelial cell protein C receptor: A multiliganded and multifunctional receptor. Blood 2014; 124: 1553-1562. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hai T, Teng F, Guo R, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 2014; 24: 372-375. [Article] [CrossRef] [PubMed] [Google Scholar]
- Connolly MR, Kuravi K, Burdorf L, et al. Humanized von Willebrand factor reduces platelet sequestration in ex vivo and in vivo xenotransplant models. Xenotransplantation 2021; 28: e12712. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ko N, Shim J, Kim HJ, et al. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model. Sci Rep 2022; 12: 9611. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wheeler DG, Joseph ME, Mahamud SD, et al. Transgenic swine: Expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 2012; 52: 958-961. [Article] [Google Scholar]
- Lundvig DMS, Immenschuh S, Wagener FADTG. Heme oxygenase, inflammation, and fibrosis: The good, the bad, and the ugly?. Front Pharmacol 2012; 3: 81. [Article] [PubMed] [Google Scholar]
- Mohiuddin MM, Goerlich CE, Singh AK, et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation 2022; 29: e12744. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yamamoto T, Hara H, Foote J, et al. Life-supporting kidney xenotransplantation from genetically engineered pigs in baboons: A comparison of two immunosuppressive regimens. Transplantation 2019; 103: 2090-2104. [Article] [CrossRef] [PubMed] [Google Scholar]
- Oropeza M, Petersen BÃ, Carnwath JW, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 2009; 16: 522-534. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ahrens HE, Petersen B, Ramackers W, et al. Kidneys from α1,3-galactosyltransferase knockout/human heme oxygenase-1/human A20 transgenic pigs are protected from rejection during ex vivo perfusion with human blood. Transplant Direct 2015; 1: 1-8. [Article] [CrossRef] [Google Scholar]
- Okazawa H, Motegi S, Ohyama N, et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 2005; 174: 2004-2011. [Article] [Google Scholar]
- Takeuchi K, Ariyoshi Y, Shimizu A, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation 2021; 28: e12708. [Article] [CrossRef] [PubMed] [Google Scholar]
- Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019; 572: 392-396. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kim YK, Kim SE, Chang Park H, et al. Human recombinant IL-10 reduces xenogenic cytotoxicity via macrophage M2 polarization. Biochem Biophys Rep 2020; 24: 100857. [Article] [PubMed] [Google Scholar]
- Pierson Iii RN, Dorling A, Ayares D, et al. Current status of xenotransplantation and prospects for clinical application. Xenotransplantation 2009; 16: 263-280. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nowak-Terpiłowska A, Lipiński D, Hryhorowicz M, et al. Production of ULBP1-KO pigs with human CD55 expression using CRISPR technology. J Appl anim Res 2020; 48: 93-101. [Article] [CrossRef] [Google Scholar]
- Joanna Z, Magdalena H, Agnieszka NT, et al. The production of UL16-binding protein 1 targeted pigs using CRISPR technology. 3 Biotech 2018; 8: 70. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sasaki H, Xu XC, Smith DM, et al. HLA-G expression protects porcine endothelial cells against natural killer cell-mediated xenogeneic cytotoxicity. Transplantation 1999; 67: 31-37. [Article] [Google Scholar]
- Lilienfeld BG, Crew MD, Forte P, et al. Transgenic expression of HLA-E single chain trimer protects porcine endothelial cells against human natural killer cell-mediated cytotoxicity. Xenotransplantation 2007; 14: 126-134. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rao JS, Hosny N, Kumbha R, et al. HLA-G1+ expression in GGTA1KO pigs suppresses human and monkey anti-pig T, B and NK cell responses. Front Immunol 2021; 12: 730545. [Article] [CrossRef] [PubMed] [Google Scholar]
- Csencsits KL, Bishop DK. Contrasting alloreactive CD4+ and CD8+ T cells: There’s more to it than MHC restriction. Am J Transplant 2003; 3: 107-115. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Du Y, Zhou X, et al. Efficient generation of B2m-null pigs via injection of zygote with TALENs. Sci Rep 2016; 6: 38854. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sake HJ, Frenzel A, Lucas-Hahn A, et al. Possible detrimental effects of beta-2-microglobulin knockout in pigs. Xenotransplantation 2019; 26: e12525. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fu R, Fang M, Xu K, et al. Generation of GGTA1-/-β2M-/-CIITA-/- pigs using CRISPR/Cas9 technology to alleviate xenogeneic immune reactions. Transplantation 2020; 104: 1566-1573. [Article] [Google Scholar]
- Xu K, Yu H, Chen S, et al. Production of triple-gene (GGTA1, B2M and CIITA)-modified donor pigs for xenotransplantation. Front Vet Sci 2022; 9: 848833. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hara H, Witt W, Crossley T, et al. Human dominant-negative class II transactivator transgenic pigs - effect on the human anti-pig T-cell immune response and immune status. Immunology 2013; 140: 39-46. [Article] [CrossRef] [PubMed] [Google Scholar]
- Iwase H, Ekser B, Satyananda V, et al. Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs. Transplant Immunol 2015; 32: 99-108. [Article] [CrossRef] [Google Scholar]
- Deppong CM, Bricker TL, Rannals BD, et al. CTLA4Ig inhibits effector T cells through regulatory T cells and TGF-β. J Immunol 2013; 191: 3082-3089. [Article] [Google Scholar]
- Bähr A, Käser T, Kemter E, et al. Ubiquitous LEA29Y expression blocks T cell co-stimulation but permits sexual reproduction in genetically modified pigs. PLoS One 2016; 11: e0155676 [CrossRef] [PubMed] [Google Scholar]
- Martin C, Plat M, Nerrière-Daguin V, et al. Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 2005; 14: 373-384. [Article] [Google Scholar]
- Vabres B, Le Bas-Bernardet S, Riochet D, et al. hCTLA4-Ig transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to non-human primate anterior lamellar keratoplasty model. Xenotransplantation 2014; 21: 431-443. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Yang HQ, Jiang W, et al. Transgenic expression of human cytoxic T-lymphocyte associated antigen4-Immunoglobulin (hCTLA4Ig) by porcine skin for xenogeneic skin grafting. Transgenic Res 2015; 24: 199-211. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Xu G, Wei Y, et al. In situ scarless skin healing of a severe human burn wound induced by a hCTLA4Ig gene-transferred porcine skin graft. Int J Med Sci 2022; 19: 952-964. [Article] [CrossRef] [PubMed] [Google Scholar]
- Klymiuk N, van Buerck L, Bähr A, et al. Xenografted islet cell clusters from INS LEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61: 1527-1532. [Article] [CrossRef] [PubMed] [Google Scholar]
- Han Y, Liu D, Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res 2020; 10: 727–742 [PubMed] [Google Scholar]
- Ding Q, Lu L, Zhou X, et al. Human PD-L1-overexpressing porcine vascular endothelial cells induce functionally suppressive human CD4+CD25hiFoxp3+ Treg cells. J Leukocyte Biol 2011; 90: 77-86. [Article] [Google Scholar]
- Buermann A, Petkov S, Petersen B, et al. Pigs expressing the human inhibitory ligand PD-L1 (CD 274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation 2018; 25: e12387. [Article] [CrossRef] [PubMed] [Google Scholar]
- Brady JL, Sutherland RM, Hancock M, et al. Anti-CD2 producing pig xenografts effect localized depletion of human T cells in a huSCID model. Xenotransplantation 2013; 20: 100-109. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nottle MB, Salvaris EJ, Fisicaro N, et al. Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9. Sci Rep 2017; 7: 8383. [Article] [CrossRef] [PubMed] [Google Scholar]
- Iwase H, Yamamoto T, Cooper DKC. Episodes of hypovolemia/dehydration in baboons with pig kidney transplants: A new syndrome of clinical importance?. Xenotransplantation 2019; 26: e12472. [Article] [CrossRef] [PubMed] [Google Scholar]
- Iwase H, Klein EC, Cooper DK. Physiologic aspects of pig kidney transplantation in nonhuman primates. Comp Med 2018; 68: 332-340. [Article] [CrossRef] [PubMed] [Google Scholar]
- Adams AB, Kim SC, Martens GR, et al. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann Surg 2018; 268: 564-573. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cozzi E, Vial C, Ostlie D, et al. Maintenance triple immunosuppression with cyclosporin A, mycophenolate sodium and steroids allows prolonged survival of primate recipients of hDAF porcine renal xenografts. Xenotransplantation 2003; 10: 300-310. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang Y, Wang K, Wu H, et al. Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering. J Mol Cell Biol 2016; 8: 174-177. [Article] [Google Scholar]
- Zhu H, Yu L, Lyu Y, et al. Optimal pig donor selection in islet xenotransplantation: Current status and future perspectives. J Zhejiang Univ Sci B 2014; 15: 681-691. [Article] [Google Scholar]
- Cho B, Lee EJ, Ahn SM, et al. Production of genetically modified pigs expressing human insulin and C-peptide as a source of islets for xenotransplantation. Transgenic Res 2019; 28: 549-559. [Article] [Google Scholar]
- Li P, Estrada JL, Burlak C, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 2015; 22: 20-31. [Article] [Google Scholar]
- Weiss EH, Lilienfeld BG, Müller S, et al. HLA-E/human β2-microglobulin transgenic pigs: Protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 2009; 87: 35-43. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yeom HJ, Koo OJ, Yang J, et al. Generation and characterization of human heme oxygenase-1 transgenic pigs. PLoS One 2012; 7: e46646 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Park SJ, Cho B, Koo OJ, et al. Production and characterization of soluble human TNFRI-Fc and human HO-1(HMOX1) transgenic pigs by using the F2A peptide. Transgenic Res 2014; 23: 407-419. [Article] [CrossRef] [PubMed] [Google Scholar]
- Reyes LM, Estrada JL, Wang ZY, et al. Creating class I MHC-Null pigs using guide rna and the Cas9 endonuclease. J Immunol 2014; 193: 5751-5757. [Article] [Google Scholar]
- Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lackingGGTA 1/CMAH/β4GalNT 2 genes. Xenotransplantation 2015; 22: 194-202. [Article] [CrossRef] [PubMed] [Google Scholar]
- Paris LL, Estrada JL, Li P, et al. Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein. Xenotransplantation 2015; 22: 203-210. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fischer K, Kraner-Scheiber S, Petersen B, et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep 2016; 6: 29081. [Article] [CrossRef] [PubMed] [Google Scholar]
- Choi K, Shim J, Ko N, et al. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39. Transgenic Res 2017; 26: 209-224. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kwon DJ, Kim DH, Hwang IS, et al. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res 2017; 26: 153-163. [Article] [Google Scholar]
- Kim GA, Lee EM, Cho B, et al. Generation by somatic cell nuclear transfer of GGTA1 knockout pigs expressing soluble human TNFRI-Fc and human HO-1. Transgenic Res 2019; 28: 91-102. [Article] [Google Scholar]
- Kim GA, Lee EM, Jin JX, et al. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res 2017; 26: 435-445. [Article] [Google Scholar]
- Liu F, Liu J, Yuan Z, et al. Generation of GTKO diannan miniature pig expressing human complementary regulator proteins hCD55 and hCD59 via T2A peptide-based bicistronic vectors and SCNT. Mol Biotechnol 2018; 60: 550-562. [Article] [Google Scholar]
- Cooper DKC, Hara H, Iwase H, et al. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 2019; 26: e12516. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fischer K, Rieblinger B, Hein R, et al. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Xenotransplantation 2020; 27: e12560. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yue Y, Xu W, Kan Y, et al. Extensive germline genome engineering in pigs. Nat Biomed Eng 2021; 5: 134-143. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hinrichs A, Riedel EO, Klymiuk N, et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 2021; 28: e12664. [Article] [Google Scholar]
- Zou LJ, Zhang YZ, He Y, et al. Selective germline genome edited pigs and their long immune tolerance in Non Human Primates. bioRxiv 2020; doi: 10.1101/2020.01.20.912105 [Google Scholar]
- Lee H, Hwang I, Vasamsetti BMK, et al. Codon optimized membrane cofactor protein expression in α 1, 3 galactosyltransferase knockout pig cells improve protection against cytotoxicity of monkey serum. 3 Biotech 2020; 10: 108. [Article] [CrossRef] [PubMed] [Google Scholar]
- Reddy P, Vilella F, Izpisua Belmonte JC, et al. Use of customizable nucleases for gene editing and other novel applications. Genes 2020; 11: 976. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rees HA, Liu DR. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 2018; 19: 770-788. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38: 824-844. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31: 822-826. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xie J, Ge W, Li N, et al. Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun 2019; 10: 2852. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma W, Xu YS, Sun XM, et al. Transposon-associated CRISPR-Cas system: A powerful DNA insertion tool. Trends Microbiol 2021; 29: 565-568. [Article] [CrossRef] [PubMed] [Google Scholar]
- Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 2019; 571: 219-225. [Article] [CrossRef] [PubMed] [Google Scholar]
- Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 2019; 365: 48-53. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Saito M, Ladha A, Strecker J, et al. Dual modes of CRISPR-associated transposon homing. Cell 2021; 184: 2441-2453.e18. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lampe GD, King RT, Halpin-Healy TS, et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat Biotechnol 2023; [Article] [PubMed] [Google Scholar]
- Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016; 540: 144-149. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Waldron D. In vivo gene editing in non-dividing cells. Nat Rev Genet 2017; 18: 1. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lu H, Liu J, Feng T, et al. A HIT-trapping strategy for rapid generation of reversible and conditional alleles using a universal donor. Genome Res 2021; 31: 900-909. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kelly JJ, Saee-Marand M, Nyström NN, et al. Safe harbor-targeted CRISPR-Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. Sci Adv 2021; 7: eabc3791. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533: 125-129. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576: 149-157. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Gao XD, Podracky CJ, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol 2022; 40: 731-740. [Article] [Google Scholar]
- Li X, Yang Y, Bu L, et al. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 2014; 24: 501-504. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ruan J, Li H, Xu K, et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 2015; 5: 14253. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zheng C, Baum BJ. Evaluation of promoters for use in tissue-specific gene delivery. Methods Mol Biol 2008; 434: 205–219 [Google Scholar]
- Peng J, Wang Y, Jiang J, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 2015; 5: 16705. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Gao X, Nowak-Imialek M, Chen X, et al. Establishment of porcine and human expanded potential stem cells. Nat Cell Biol 2019; 21: 687-699. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhi M, Zhang J, Tang Q, et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Res 2022; 32: 383-400. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fan N, Chen J, Shang Z, et al. Piglets cloned from induced pluripotent stem cells. Cell Res 2013; 23: 162-166. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mohiuddin MM, Singh AK, Scobie L, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: A case report. Lancet 2023; 402: 397-410. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.