Open Access
Issue |
Natl Sci Open
Volume 2, Number 6, 2023
|
|
---|---|---|
Article Number | 20230033 | |
Number of page(s) | 12 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20230033 | |
Published online | 22 August 2023 |
- Beck A, Zabilskiy M, Newton MA, et al. Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nat Catal 2021; 4: 488-497. [Article] [CrossRef] [Google Scholar]
- Zhou B, Ou P, Pant N, et al. Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc Natl Acad Sci USA 2020; 117: 1330-1338. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020; 581: 178-183. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Liu J, Wang Y, et al. Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nat Commun 2018; 9: 5003. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016; 353: 467-470. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schreier M, Héroguel F, Steier L, et al. Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy 2017; 2: 17087. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cestellos-Blanco S, Zhang H, Kim JM, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat Catal 2020; 3: 245-255. [Article] [CrossRef] [Google Scholar]
- Yuan H, Cheng B, Lei J, et al. Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore. Nat Commun 2021; 12: 1835. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jiang Z, Xu X, Ma Y, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020; 586: 549-554. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xu Y, Li X, Gao J, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 2021; 371: 610-613. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Terrer C, Phillips RP, Hungate BA, et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 2021; 591: 599-603. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Steffens L, Pettinato E, Steiner TM, et al. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 2021; 592: 784-788. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schäppi R, Rutz D, Dähler F, et al. Drop-in fuels from sunlight and air. Nature 2021; 601: 63-68. [Article] [Google Scholar]
- Kato N, Mizuno S, Shiozawa M, et al. A large-sized cell for solar-driven CO2 conversion with a solar-to-formate conversion efficiency of 7.2%. Joule 2021; 5: 687-705. [Article] [CrossRef] [Google Scholar]
- Mi Y, Qiu Y, Liu Y, et al. Cobalt-iron oxide nanosheets for high-efficiency solar-driven CO2-H2O coupling electrocatalytic reactions. Adv Funct Mater 2020; 30: 2003438. [Article] [CrossRef] [Google Scholar]
- Wang J, Zardetto V, Datta K, et al. 16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nat Commun 2020; 11: 5254. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chae SY, Lee SY, Han SG, et al. A perspective on practical solar to carbon monoxide production devices with economic evaluation. Sustain Energy Fuels 2020; 4: 199-212. [Article] [CrossRef] [Google Scholar]
- Xu Y, Li F, Xu A, et al. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nat Commun 2021; 12: 2932. [Article] [CrossRef] [PubMed] [Google Scholar]
- Devasia D, Wilson AJ, Heo J, et al. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat Commun 2021; 12: 2612. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tang C, Gong P, Xiao T, et al. Direct electrosynthesis of 52% concentrated CO on silver’s twin boundary. Nat Commun 2021; 12: 2139. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020; 577: 509-513. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Nam DH, De Luna P, Rosas-Hernández A, et al. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater 2020; 19: 266-276. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat Catal 2020; 3: 478-487. [Article] [CrossRef] [Google Scholar]
- Tahir M, Tasleem S, Tahir B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int J Hydrogen Energy 2020; 45: 15985-16038. [Article] [CrossRef] [Google Scholar]
- Qiu XF, Zhu HL, Huang JR, et al. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J Am Chem Soc 2021; 143: 7242-7246. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci 2018; 11: 1204-1210. [Article] [CrossRef] [Google Scholar]
- Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy 2018; 3: 140-147. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lee WH, Lim C, Ban E, et al. W@Ag dendrites as efficient and durable electrocatalyst for solar-to-CO conversion using scalable photovoltaic-electrochemical system. Appl Catal B-Environ 2021; 297: 120427. [Article] [CrossRef] [Google Scholar]
- Xu Y, Zhang W, Li Y, et al. A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. J Energy Chem 2020; 43: 52-57. [Article] [CrossRef] [Google Scholar]
- Ju T, Zhou YQ, Cao KG, et al. Dicarboxylation of alkenes, allenes and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nat Catal 2021; 4: 304-311. [Article] [CrossRef] [Google Scholar]
- Gu J, Hsu CS, Bai L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019; 364: 1091-1094. [Article] [CrossRef] [PubMed] [Google Scholar]
- Salvatore DA, Gabardo CM, Reyes A, et al. Designing anion exchange membranes for CO2 electrolysers. Nat Energy 2021; 6: 339-348. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jia J, Seitz LC, Benck JD, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun 2016; 7: 13237. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li Y, Hao J, Song H, et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat Commun 2019; 10: 2359. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Wang L, Dong Y, Yan T, et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat Commun 2020; 11: 2432. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen Y, Zhang Y, Fan G, et al. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 2021; 5: 3235-3251. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Rohling JH, Shen J, Wang C, et al. Determination of binary diffusion coefficients of gases using photothermal deflection technique. Appl Phys B 2007; 87: 355-362. [Article] [CrossRef] [Google Scholar]
- Belgodere C, Dubessy J, Vautrin D, et al. Experimental determination of CO2 diffusion coefficient in aqueous solutions under pressure at room temperature via Raman spectroscopy: Impact of salinity (NaCl). J Raman Spectrosc 2015; 46: 1025-1032. [Article] [CrossRef] [Google Scholar]
- Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 2020; 120: 7984-8034. [Article] [CrossRef] [PubMed] [Google Scholar]
- Das S, Pérez-Ramírez J, Gong J, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 2020; 49: 2937-3004. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li Y, Bai X, Yuan D, et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nat Commun 2022; 13: 776. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Li Y, Bai X, Yuan D, et al. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat Commun 2023; 14: 3171. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li Y, Guan Q, Huang G, et al. Low temperature thermal and solar heating carbon-free hydrogen production from ammonia using nickel single atom catalysts. Adv Energy Mater 2022; 12: 2202459. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lourenço AC, Reis-Machado AS, Fortunato E, et al. Sunlight-driven CO2-to-fuel conversion: Exploring thermal and electrical coupling between photovoltaic and electrochemical systems for optimum solar-methane production. Mater Today Energy 2020; 17: 100425. [Article] [CrossRef] [Google Scholar]
- White JL, Herb JT, Kaczur JJ, et al. Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide. J CO2 Util 2014; 7: 1-5. [Article] [Google Scholar]
- Urbain F, Tang P, Carretero NM, et al. A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ Sci 2017; 10: 2256-2266. [Article] [CrossRef] [Google Scholar]
- Cheng WH, Richter MH, Sullivan I, et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination. ACS Energy Lett 2020; 5: 470-476. [Article] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.