Open Access
Issue |
Natl Sci Open
Volume 3, Number 2, 2024
|
|
---|---|---|
Article Number | 20230010 | |
Number of page(s) | 20 | |
Section | Earth and Environmental Sciences | |
DOI | https://doi.org/10.1360/nso/20230010 | |
Published online | 07 July 2023 |
- Carlson CJ, Albery GF, Merow C, et al. Climate change increases cross-species viral transmission risk. Nature 2022; 607: 555-562. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang J, Zhou M, Ren Z, et al. Projecting heat-related excess mortality under climate change scenarios in China. Nat Commun 2021; 12: 1039. [Article] [Google Scholar]
- Hong C, Zhang Q, Zhang Y, et al. Impacts of climate change on future air quality and human health in China. Proc Natl Acad Sci USA 2019; 116: 17193-17200. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Nam KJ, Li Q, Heo SK, et al. Inter-regional multimedia fate analysis of PAHs and potential risk assessment by integrating deep learning and climate change scenarios. J Hazard Mater 2021; 411: 125149. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Octaviani M, Stemmler I, Lammel G, et al. Atmospheric transport of persistent organic pollutants to and from the arctic under present-day and future climate. Environ Sci Technol 2015; 49: 3593-3602. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang X, Wang C, Zhu T, et al. Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects. Environ Pollution 2019; 248: 191-208. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang X, Zhang Y, Dassuncao C, et al. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges. Glob Biogeochem Cycle 2017; 31: 1332-1343. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lamon L, von Waldow H, MacLeod M, et al. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario. Environ Sci Technol 2009; 43: 5818-5824. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yu Y, Katsoyiannis A, Bohlin-Nizzetto P, et al. Polycyclic aromatic hydrocarbons not declining in Arctic air despite global emission reduction. Environ Sci Technol 2019; 53: 2375-2382. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Friedman CL, Zhang Y, Selin NE. Climate change and emissions impacts on atmospheric PAH transport to the Arctic. Environ Sci Technol 2014; 48: 429-437. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Komprda J, Komprdová K, Sáňka M, et al. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils. Environ Sci Technol 2013; 47: 7052-7059. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cai JJ, Song JH, Lee Y, et al. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction. Sci Total Environ 2014; 470-471: 1526-1536. [Article] [CrossRef] [PubMed] [Google Scholar]
- Su C, Song S, Lu Y, et al. Potential effects of changes in climate and emissions on distribution and fate of perfluorooctane sulfonate in the Bohai Rim, China. Sci Total Environ 2018; 613-614: 352-360. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen J, Xia X, Wang H, et al. Uptake pathway and accumulation of polycyclic aromatic hydrocarbons in spinach affected by warming in enclosed soil/water-air-plant microcosms. J Hazard Mater 2019; 379: 120831. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang Q, Wang H, Xia X, et al. Elevated temperature enhances the bioavailability of pyrene to Daphnia magna in the presence of dissolved organic matter: Implications for the effect of climate warming. Environ Pollution 2020; 266: 115349. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu Y, Price OR, Kilgallon J, et al. A multimedia fate model to support chemical management in China: A case study for selected trace organics. Environ Sci Technol 2016; 50: 7001-7009. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Macdonald RW, Mackay D, Li YF, et al. How will global climate change affect risks from long-range transport of persistent organic pollutants?. Hum Ecol Risk Assessment-An Int J 2003; 9: 643-660. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kong D, MacLeod M, Li Z, et al. Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios. Chemosphere 2013; 93: 2086-2093. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nadal M, Marquès M, Mari M, et al. Climate change and environmental concentrations of POPs: A review. Environ Res 2015; 143: 177-185. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kallenborn R, Halsall C, Dellong M, et al. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. J Environ Monit 2012; 14: 2854. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shen H, Tao S, Liu J, et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Sci Rep 2014; 4: 6561. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Qiao X, Zheng B, Li X, et al. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China. J Hazard Mater 2021; 402: 123419. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shi R, Li X, Yang Y, et al. Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China. Environ Pollution 2021; 268: 115938. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- McKone TE, Daniels JI, Goldman M. Uncertainties in the link between global climate change and predicted health risks from pollution: Hexachlorobenzene (HCB) case study using a fugacity model. Risk Anal 1996; 16: 377-393. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Boström CE, Gerde P, Hanberg A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 2002; 110: 451-488. [Article] [PubMed] [Google Scholar]
- Armstrong B, Hutchinson E, Unwin J, et al. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environ Health Perspect 2004; 112: 970-978. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hemminki K, Pershagen G. Cancer risk of air pollution: Epidemiological evidence.. Environ Health Perspect 1994; 102: 187-192. [Article] [PubMed] [Google Scholar]
- Hong WJ, Jia H, Ma WL, et al. Distribution, fate, inhalation exposure and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in some Asian countries. Environ Sci Technol 2016; 50: 7163-7174. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shen H, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 2013; 47: 6415-6424. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shen H, Tao S, Wang R, et al. Global time trends in PAH emissions from motor vehicles. Atmos Environ 2011; 45: 2067-2073. [Article] [CrossRef] [Google Scholar]
- Cui H, Lu Y, Zhou Y, et al. Spatial variation and driving mechanism of polycyclic aromatic hydrocarbons (PAHs) emissions from vehicles in China. J Cleaner Production 2022; 336: 130210. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ministry of Ecology and Environment, the People’s Republic of China. Air pollution prevention and control plan for Beijing-Tianjin-Hebei and its surrounding areas in 2017. 2017. https://www.mee.gov.cn/ywdt/hjywnews/201703/t20170330_409037.shtml [Google Scholar]
- Department of Energy Statistics, National Bureau of Statistics, the People’s Republic of China. China Energy Statistical Yearbook. Beijing: China Statistics Press, 2021. https://navi.cnki.net/knavi/yearbooks/YCXME/detail?uniplatform=NZKPT&language=chs [Google Scholar]
- Liu X, Zhang G, Li J, et al. Polycyclic aromatic hydrocarbons (PAHs) in the air of Chinese cities. J Environ Monit 2007; 9: 1092. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Lin Y, Cai J, et al. Atmospheric PAHs in North China: Spatial distribution and sources. Sci Total Environ 2016; 565: 994-1000. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. Sci Total Environ 2017; 605-606: 1011-1020. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xia X, Liu Y, Zhang Z, et al. Soil PAH concentrations decrease in China in response to the adjustment of the energy structure during the past two decades. Engineering 2023; 21: 115-123. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yao Y, Huang CL, Wang JZ, et al. Significance of anthropogenic factors to freely dissolved polycyclic aromatic hydrocarbons in freshwater of china. Environ Sci Technol 2017; 51: 8304-8312. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Riahi K, Rao S, Krey V, et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 2011; 109: 33-57. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Beck HE, Zimmermann NE, McVicar TR, et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 2018; 5: 180214. [Article] [CrossRef] [Google Scholar]
- Domínguez-Morueco N, Ratola N, Sierra J, et al. Combining monitoring and modelling approaches for BaP characterization over a petrochemical area. Sci Total Environ 2019; 658: 424-438. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu H, Jiang Z, Li L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci Bull 2021; 66: 2528-2537. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Chen J. Uncertainty in projection of climate extremes: A comparison of CMIP5 and CMIP6. J Meteorol Res 2021; 35: 646-662. [Article] [Google Scholar]
- Zhu Y, Tao S, Price OR, et al. Environmental distributions of benzo[a]pyrene in China: Current and future emission reduction scenarios explored using a spatially explicit multimedia fate model. Environ Sci Technol 2015; 49: 13868-13877. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li Y, Zhu Y, Liu W, et al. Modeling multimedia fate and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the coastal regions of the Bohai and Yellow Seas. Sci Total Environ 2022; 818: 151789. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Price OR, Tao S, et al. A new multimedia contaminant fate model for China: How important are environmental parameters in influencing chemical persistence and long-range transport potential?. Environ Int 2014; 69: 18-27. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu Y, Tao S, Sun J, et al. Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. Sci Total Environ 2019; 647: 962-972. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- U.S. Environmental Protection Agency. Estimation Programs Interface Suite™ for Microsoft® Windows, v4.11. 2012. https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411 [Google Scholar]
- Arnot JA, Gobas FAPC. A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR Comb Sci 2003; 22: 337-345. [Article] [CrossRef] [Google Scholar]
- Mackay D, Hughes AI. Three-parameter equation describing the uptake of organic compounds by fish. Environ Sci Technol 1984; 18: 439-444. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gobas FAPC, MacKay D. Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ Toxicol Chem 1987; 6: 495-504. [Article] [Google Scholar]
- Wania F, Mackay D. The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ Pollution 1999; 100: 223-240. [Article] [CrossRef] [Google Scholar]
- Keith L, Telliard W. ES&T special report: Priority pollutants: I-a perspective view. Environ Sci Technol 1979; 13: 416-423. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shuttleworth KL, Cerniglia E. Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 1995; 54: 291-302. [Article] [CrossRef] [PubMed] [Google Scholar]
- He J, Yang K, Tang W, et al. The first high-resolution meteorological forcing dataset for land process studies over China. Sci Data 2020; 7: 25. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Nisbet ICT, LaGoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicol Pharmacol 1992; 16: 290-300. [Article] [CrossRef] [Google Scholar]
- Xu X. China population spatial distribution kilometer grid data set. Resources and Environmental Science Data Registration and Publication System (http://www.resdc.cn/DOI), 2017, [Article] [Google Scholar]
- Shen G, Ru M, Du W, et al. Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nat Commun 2019; 10: 3405. [Article] [Google Scholar]
- Liu Q, Xu X, Lin L, et al. Occurrence, health risk assessment and regional impact of parent, halogenated and oxygenated polycyclic aromatic hydrocarbons in tap water. J Hazard Mater 2021; 413: 125360. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ministry of Environmental Protection, the People’s Republic of China. Technical guideline for population exposure assessment of environmental pollutant. 2017. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/qt/201711/t20171130_427192.shtml [Google Scholar]
- Jamhari AA, Sahani M, Latif MT, et al. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos Environ 2014; 86: 16-27. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- WHO. Global health observatory data repository. 2021. https://apps.who.int/gho/data/node.home [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund: Volume I. Human Health Evaluation Manual (RAGS/HHEM). 1989. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.