Issue
Natl Sci Open
Volume 3, Number 2, 2024
Special Topic: AI for Chemistry
Article Number 20230040
Number of page(s) 10
Section Chemistry
DOI https://doi.org/10.1360/nso/20230040
Published online 06 February 2024
  • Butler KT, Davies DW, Cartwright H, et al. Machine learning for molecular and materials science. Nature 2018; 559: 547-555. [Article] [Google Scholar]
  • de Almeida AF, Moreira R, Rodrigues T. Synthetic organic chemistry driven by artificial intelligence. Nat Rev Chem 2019; 3: 589-604. [Article] [Google Scholar]
  • Gomes CP, Selman B, Gregoire JM. Artificial intelligence for materials discovery. MRS Bull 2019; 44: 538-544. [Article] [Google Scholar]
  • Pei Z, Yin J, Liaw PK, et al. Toward the design of ultrahigh-entropy alloys via mining six million texts. Nat Commun 2023; 14: 54. [Article] [Google Scholar]
  • Kononova O, Huo H, He T, et al. Text-mined dataset of inorganic materials synthesis recipes. Sci Data 2019; 6: 203. [Article] [Google Scholar]
  • He T, Sun W, Huo H, et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chem Mater 2020; 32: 7861-7873. [Article] [Google Scholar]
  • Kumar A, Ganesh S, Gupta D, et al. A text mining framework for screening catalysts and critical process parameters from scientific literature—A study on hydrogen production from alcohol. Chem Eng Res Des 2022; 184: 90-102. [Article] [Google Scholar]
  • Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI Conference on Artificial Intelligence. Austin, 2015 [Google Scholar]
  • Pujara J, Miao H, Getoor L, et al. Knowledge graph identification. In: International Semantic Web Conference. Athens, 2013, 542-557 [Google Scholar]
  • Wang Q, Mao Z, Wang B, et al. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans Knowl Data Eng 2017; 29: 2724-2743. [Article] [Google Scholar]
  • Nie Z, Liu Y, Yang L, et al. Construction and application of materials knowledge graph based on author disambiguation: Revisiting the evolution of LiFePO4. Adv Energy Mater 2021; 11: 2003580. [Article] [Google Scholar]
  • Rindflesch TC, Fiszman M. The interaction of domain knowledge and linguistic structure in natural language processing: Interpreting hypernymic propositions in biomedical text. J BioMed Inf 2003; 36: 462-477. [Article] [Google Scholar]
  • Rindflesch TC, Kilicoglu H, Fiszman M, et al. Semantic MEDLINE: An advanced information management application for biomedicine. Inform Serv Use 2011; 31: 15-21. [Article] [Google Scholar]
  • Gu Y, Tinn R, Cheng H, et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans Comput Healthc 2022; 3: 1-23. [Article] [Google Scholar]
  • Hong L, Lin J, Li S, et al. A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories. Nat Mach Intell 2020; 2: 347-355. [Article] [Google Scholar]
  • Manica M, Mathis R, Cadow J, et al. Context-specific interaction networks from vector representation of words. Nat Mach Intell 2019; 1: 181-190. [Article] [Google Scholar]
  • Harnoune A, Rhanoui M, Mikram M, et al. BERT based clinical knowledge extraction for biomedical knowledge graph construction and analysis. Comput Methods Programs Biomed Update 2021; 1: 100042. [Article] [Google Scholar]
  • Nicholson DN, Greene CS. Constructing knowledge graphs and their biomedical applications. Comput Struct Biotechnol J 2020; 18: 1414-1428. [Article] [Google Scholar]
  • Santos A, Colaço AR, Nielsen AB, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol 2022; 40: 692-702. [Article] [Google Scholar]
  • Wang X, Meng L, Wang X, et al. The construction of environmental-policy-enterprise knowledge graph based on PTA model and PSA model. Resour Conserv Recycl Adv 2021; 12: 200057. [Article] [Google Scholar]
  • Mrdjenovich D, Horton MK, Montoya JH, et al. Propnet: A knowledge graph for materials science. Matter 2020; 2: 464-480. [Article] [Google Scholar]
  • Nie Z, Zheng S, Liu Y, et al. Automating materials exploration with a semantic knowledge graph for Li-ion battery cathodes. Adv Funct Mater 2022; 32: 2201437. [Article] [Google Scholar]
  • Aramouni NAK, Touma JG, Tarboush BA, et al. Catalyst design for dry reforming of methane: Analysis review. Renew Sustain Energy Rev 2018; 82: 2570-2585. [Article] [Google Scholar]
  • Guo W, Zhang K, Liang Z, et al. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem Soc Rev 2019; 48: 5658-5716. [Article] [Google Scholar]
  • Abdulrasheed A, Jalil AA, Gambo Y, et al. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew Sustain Energy Rev 2019; 108: 175-193. [Article] [Google Scholar]
  • Garg S, Li M, Weber AZ, et al. Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J Mater Chem A 2020; 8: 1511-1544. [Article] [Google Scholar]
  • Feng X, Liu H, He C, et al. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catal Sci Technol 2018; 8: 936-954. [Article] [Google Scholar]
  • Winther KT, Hoffmann MJ, Boes JR, et al. Catalysis-Hub.org, an open electronic structure database for surface reactions. Sci Data 2019; 6: 75. [Article] [Google Scholar]
  • Shanghai Institute of Organic Chemistry of CAS. Chemistry Database [1978–2023]. https://organchem.csdb.cn [Google Scholar]
  • Devlin J, Chang MW, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arxiv:1810.04805, 2018 [Google Scholar]
  • Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008; 9: 2579-2605 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.