Issue
Natl Sci Open
Volume 3, Number 2, 2024
Special Topic: AI for Chemistry
Article Number 20230055
Number of page(s) 15
Section Chemistry
DOI https://doi.org/10.1360/nso/20230055
Published online 01 February 2024
  • Zhu B, Wang H, Leow WR, et al. Silk fibroin for flexible electronic devices. Adv Mater 2016; 28: 4250-4265. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yang H, Li J, Lim KZ, et al. Automatic strain sensor design via active learning and data augmentation for soft machines. Nat Mach Intell 2022; 4: 84-94. [Article] [Google Scholar]
  • Cullinan MA, Culpepper ML. Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment. Phys Rev B 2010; 82: 115428. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Grabowski K, Zbyrad P, Uhl T, et al. Multiscale electro-mechanical modeling of carbon nanotube composites. Comput Mater Sci 2017; 135: 169-180. [Article] [CrossRef] [Google Scholar]
  • Huang J, Yang X, Liu J, et al. Vibration monitoring based on flexible multi-walled carbon nanotube/polydimethylsiloxane film sensor and the application on motion signal acquisition. Nanotechnology 2020; 31: 335504. [Article] [Google Scholar]
  • Rosle MH, Wang Z, Shiblee MNI, et al. Soft resistive tactile sensor based on CNT-PDMS-gel to estimate contact force. IEEE Sens Lett 2022; 6: 1-4. [Article] [CrossRef] [Google Scholar]
  • Bao WS, Meguid SA, Zhu ZH, et al. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech Mater 2012; 46: 129-138. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hu N, Karube Y, Yan C, et al. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 2008; 56: 2929-2936. [Article] [CrossRef] [Google Scholar]
  • Arora G, Pathak H. Modeling of transversely isotropic properties of CNT-polymer composites using meso-scale FEM approach. Compos Part B-Eng 2019; 166: 588-597. [Article] [CrossRef] [Google Scholar]
  • Zhang C, Curiel-Sosa JL, Bui TQ. Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites. Composite Struct 2017; 159: 667-676. [Article] [CrossRef] [Google Scholar]
  • Zhang C, Curiel-Sosa JL, Bui TQ. A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites. Composite Struct 2017; 163: 32-43. [Article] [CrossRef] [Google Scholar]
  • Li CM, Li CY, Zhang CC, et al. Simulation on electrical conductivity of CNTs/PE composites. Adv Mater Res 2014; 1035: 408-412. [Article] [CrossRef] [Google Scholar]
  • Ebbesen TW, Lezec HJ, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature 1996; 382: 54-56. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Bao WX, Zhu CC, Cui WZ. Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Phys B-Condensed Matter 2004; 352: 156-163. [Article] [Google Scholar]
  • Wagner C, Schuster J, Gessner T. DFT investigations of the piezoresistive effect of carbon nanotubes for sensor application. Phys Status Solidi (b) 2012; 249: 2450-2453. [Article] arxiv:1706.09621 [NASA ADS] [CrossRef] [Google Scholar]
  • Wei X, Liu Y, Chen Q, et al. The very-low shear modulus of multi-walled carbon nanotubes determined simultaneously with the axial Young’s modulus via in situ experiments. Adv Funct Mater 2008; 18: 1555-1562. [Article] [Google Scholar]
  • Peralta-Inga Z, Boyd S, Murray JS, et al. Density functional tight-binding studies of carbon nanotube structures. Struct Chem 2003; 14: 431-443. [Article] [CrossRef] [Google Scholar]
  • Fish J, Wagner GJ, Keten S. Mesoscopic and multiscale modelling in materials. Nat Mater 2021; 20: 774-786. [Article] [Google Scholar]
  • Ghaffari MA, Zhang Y, Xiao S. Molecular dynamics modeling and simulation of lubricant between sliding solids. J Micromech Mol Phys 2017; 02: 1750009. [Article] [Google Scholar]
  • Xiao S, Hu R, Li Z, et al. A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua. Neural Comput Applic 2019; 32: 14359-14373. [Article] [Google Scholar]
  • Subramanian N, Rai A, Chattopadhyay A. Atomistically informed stochastic multiscale model to predict the behavior of carbon nanotube-enhanced nanocomposites. Carbon 2015; 94: 661-672. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jiang S, Tao J, Sewell TD, et al. Hierarchical multiscale simulations of crystalline β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX): Generalized interpolation material point method simulations of brittle fracture using an elastodamage model derived from molecular dynamics. Int J Damage Mech 2017; 26: 293-313. [Article] [CrossRef] [Google Scholar]
  • Brunton SL, Kutz JN. Methods for data-driven multiscale model discovery for materials. J Phys Mater 2019; 2: 044002. [Article] [CrossRef] [Google Scholar]
  • Pattnaik P, Sharma A, Choudhary M, et al. Role of machine learning in the field of fiber reinforced polymer composites: A preliminary discussion. Mater Today-Proc 2021; 44: 4703-4708. [Article] [CrossRef] [Google Scholar]
  • Sun X, Yue L, Yu L, et al. Machine learning-evolutionary algorithm enabled design for 4D-printed active composite structures. Adv Funct Mater 2021; 32: 2109805. [Article] [Google Scholar]
  • Milad A, Hussein SH, Khekan AR, et al. Development of ensemble machine learning approaches for designing fiber-reinforced polymer composite strain prediction model. Eng Comput 2022; 38: 3625-3637. [Article] [CrossRef] [Google Scholar]
  • Marani A, Nehdi ML. Machine learning prediction of compressive strength for phase change materials integrated cementitious composites. Constr Build Mater 2020; 265: 120286. [Article] [CrossRef] [Google Scholar]
  • Yuan M, Zhao H, Xie Y, et al. Prediction of stiffness degradation based on machine learning: Axial elastic modulus of [0_m/90_n]_s composite laminates. Compos Sci Tech 2022; 218: 109186. [Article] [CrossRef] [Google Scholar]
  • Liu B, Vu-Bac N, Rabczuk T. A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms. Composite Struct 2021; 273: 114269. [Article] [CrossRef] [Google Scholar]
  • Huang JS, Liew JX, Liew KM. Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites. Composite Struct 2021; 267: 113917. [Article] [CrossRef] [Google Scholar]
  • Le TT. Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method. J Composite Mater 2020; 55: 787-811. [Article] [Google Scholar]
  • Xiao S, Deierling P, Attarian S, et al. Machine learning in multiscale modeling of spatially tailored materials with microstructure uncertainties. Comput Struct 2021; 249: 106511. [Article] [CrossRef] [Google Scholar]
  • Matouš K, Geers MGD, Kouznetsova VG, et al. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 2017; 330: 192-220. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Hansoge NK, Huang T, Sinko R, et al. Materials by design for stiff and tough hairy nanoparticle assemblies. ACS Nano 2018; 12: 7946-7958. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wu Y, Huang M, Wang F, et al. Determination of the Young’s modulus of structurally defined carbon nanotubes. Nano Lett 2008; 8: 4158-4161. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Krishnan A, Dujardin E, Ebbesen TW, et al. Young’s modulus of single-walled nanotubes. Phys Rev B 1998; 58: 14013-14019. [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.