Open Access
Issue |
Natl Sci Open
Volume 3, Number 4, 2024
Special Topic: Active Matter
|
|
---|---|---|
Article Number | 20230050 | |
Number of page(s) | 12 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20230050 | |
Published online | 04 December 2023 |
- Zhang J, Alert R, Yan J, et al. Active phase separation by turning towards regions of higher density. Nat Phys 2021; 17: 961-967. [Article]arxiv:2011.03175 [NASA ADS] [CrossRef] [Google Scholar]
- Zheng J, Chen J, Jin Y, et al. Photochromism from wavelength-selective colloidal phase segregation. Nature 2023; 617: 499-506. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zaccarelli E. Colloidal gels: Equilibrium and non-equilibrium routes. J Phys-Condens Matter 2007; 19: 323101. [Article]arxiv:0705.3418 [NASA ADS] [CrossRef] [Google Scholar]
- Wang F, Altschuh P, Ratke L, et al. Progress report on phase separation in polymer solutions. Adv Mater 2019; 31: 1806733. [Article] [CrossRef] [Google Scholar]
- Hooper JB, Schweizer KS. Theory of phase separation in polymer nanocomposites. Macromolecules 2006; 39: 5133-5142. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bialek W, Cavagna A, Giardina I, et al. Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci USA 2012; 109: 4786-4791. [Article]arxiv:1107.0604 [Google Scholar]
- van de Koppel J, Gascoigne JC, Theraulaz G, et al. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 2008; 322: 739-742. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Linde AD. Phase transitions in gauge theories and cosmology. Rep Prog Phys 1979; 42: 389-437. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cates ME, Tailleur J. Motility-Induced Phase Separation. Annu Rev Condens Matter Phys 2015; 6: 219-244. [Article]arxiv:1406.3533 [NASA ADS] [CrossRef] [Google Scholar]
- Fily Y, Marchetti MC. Athermal phase separation of self-propelled particles with no alignment. Phys Rev Lett 2012; 108: 235702. [Article]arxiv:1201.4847 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Buttinoni I, Bialké J, Kümmel F, et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys Rev Lett 2013; 110: 238301. [Article]arxiv:1305.4185 [CrossRef] [PubMed] [Google Scholar]
- Stenhammar J, Tiribocchi A, Allen RJ, et al. Continuum theory of phase separation kinetics for active brownian particles. Phys Rev Lett 2013; 111: 145702. [Article]arxiv:1307.4373 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Löwen H. Colloidal dispersions in external fields: Recent developments. J Phys-Condens Matter 2008; 20: 404201. [Article] [CrossRef] [Google Scholar]
- Jones MR, Seeman NC, Mirkin CA. Programmable materials and the nature of the DNA bond. Science 2015; 347: 1260901. [Article] [Google Scholar]
- Palacci J, Sacanna S, Steinberg AP, et al. Living crystals of light-activated colloidal surfers. Science 2013; 339: 936-940. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Theurkauff I, Cottin-Bizonne C, Palacci J, et al. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys Rev Lett 2012; 108: 268303. [Article]arxiv:1202.6264 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ginot F, Theurkauff I, Detcheverry F, et al. Aggregation-fragmentation and individual dynamics of active clusters. Nat Commun 2018; 9: 696. [Article] [CrossRef] [PubMed] [Google Scholar]
- Agudo-Canalejo J, Golestanian R. Active phase separation in mixtures of chemically interacting particles. Phys Rev Lett 2019; 123: 018101. [Article]arxiv:1901.09022 [Google Scholar]
- Peng Y, Xu P, Duan S, et al. Generic rules for distinguishing autophoretic colloidal motors. Angew Chem Int Ed 2022; 61: e202116041. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kagan D, Balasubramanian S, Wang J. Chemically triggered swarming of gold microparticles. Angew Chem Int Ed 2011; 50: 503–506 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hong Y, Diaz M, Córdova-Figueroa UM, et al. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv Funct Mater 2010; 20: 1568-1576. [Article] [CrossRef] [Google Scholar]
- Ibele M, Mallouk TE, Sen A. Schooling behavior of light-powered autonomous micromotors in water. Angew Chem Int Ed 2009; 48: 3308–3312 [CrossRef] [PubMed] [Google Scholar]
- Trivedi M, Saxena D, Ng WK, et al. Self-organized lasers from reconfigurable colloidal assemblies. Nat Phys 2022; 18: 939-944. [Article]arxiv:2201.05427 [NASA ADS] [CrossRef] [Google Scholar]
- Wu C, Dai J, Li X, et al. Ion-exchange enabled synthetic swarm. Nat Nanotechnol 2021; 16: 288-295. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gao Y, Wang M, Zhang Z, et al. Flash nanoprecipitation offers large-format full-color and dual-mode fluorescence patterns for codes-in-code encryption and anti-counterfeiting. Adv Photon Res 2022; 3: 2200091. [Article] [CrossRef] [Google Scholar]
- Shah ZH, Wang S, Xian L, et al. Highly efficient chemically-driven micromotors with controlled snowman-like morphology. Chem Commun 2020; 56: 15301-15304. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chaturvedi N, Hong Y, Sen A, et al. Magnetic enhancement of phototaxing catalytic motors. Langmuir 2010; 26: 6308-6313. [Article] [CrossRef] [PubMed] [Google Scholar]
- Velegol D, Garg A, Guha R, et al. Origins of concentration gradients for diffusiophoresis. Soft Matter 2016; 12: 4686-4703. [Article] [Google Scholar]
- Anderson JL. Colloid transport by interfacial forces. Annu Rev Fluid Mech 1989; 21: 61-99. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen X, Xu Y, Zhou C, et al. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. Sci Adv 2022; 8: eabn9130. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Brown A, Poon W. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 2014; 10: 4016-4027. [Article]arxiv:1312.4130 [Google Scholar]
- Brown AT, Poon WCK, Holm C, et al. Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matter 2017; 13: 1200-1222. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhou X, Wang S, Xian L, et al. Ionic effects in ionic diffusiophoresis in chemically driven active colloids. Phys Rev Lett 2021; 127: 168001. [Article] [Google Scholar]
- Yan M, Liu T, Li X, et al. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J Am Chem Soc 2022; 144: 7778-7789. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ibele ME, Lammert PE, Crespi VH, et al. Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 2010; 4: 4845-4851. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen X, Zhou C, Peng Y, et al. Temporal light modulation of photochemically active, oscillating micromotors: dark pulses, mode switching, and controlled clustering. ACS Appl Mater Interfaces 2020; 12: 11843-11851. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.