Open Access
Issue |
Natl Sci Open
Volume 3, Number 4, 2024
Special Topic: Active Matter
|
|
---|---|---|
Article Number | 20230069 | |
Number of page(s) | 12 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20230069 | |
Published online | 01 April 2024 |
- Czirók A, Vicsek T. Collective behavior of interacting self-propelled particles. Phys A-Stat Mech Appl 2000; 281: 17–29.[Article] [CrossRef] [Google Scholar]
- Marchetti MC, Joanny JF, Ramaswamy S, et al. Hydrodynamics of soft active matter. Rev Mod Phys 2013; 85: 1143–1189.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Elgeti J, Winkler RG, Gompper G. Physics of microswimmers-single particle motion and collective behavior: A review. Rep Prog Phys 2015; 78: 056601.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Bechinger C, Di Leonardo R, Löwen H, et al. Active particles in complex and crowded environments. Rev Mod Phys 2016; 88: 045006.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wu XL, Libchaber A. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys Rev Lett 2000; 84: 3017–3020.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dombrowski C, Cisneros L, Chatkaew S, et al. Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 2004; 93: 098103.[Article] [CrossRef] [PubMed] [Google Scholar]
- Peng Y, Lai L, Tai YS, et al. Diffusion of ellipsoids in bacterial suspensions. Phys Rev Lett 2016; 116: 068303.[Article] [Google Scholar]
- Liu P, Ye S, Ye F, et al. Constraint dependence of active depletion forces on passive particles. Phys Rev Lett 2020; 124: 158001.[Article] [Google Scholar]
- Ye S, Liu P, Ye F, et al. Active noise experienced by a passive particle trapped in an active bath. Soft Matter 2020; 16: 4655–4660.[Article] [Google Scholar]
- Kanazawa K, Sano TG, Cairoli A, et al. Loopy Lévy flights enhance tracer diffusion in active suspensions. Nature 2020; 579: 364–367.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shea J, Jung G, Schmid F. Passive probe particle in an active bath: Can we tell it is out of equilibrium? Soft Matter 2022; 18: 6965–6973.[Article] [Google Scholar]
- Cheng K, Liu P, Yang M, et al. Experimental investigation of active noise on a rotor in an active granular bath. Soft Matter 2022; 18: 2541–2548.[Article] [Google Scholar]
- Kurihara T, Aridome M, Ayade H, et al. Non-Gaussian limit fluctuations in active swimmer suspensions. Phys Rev E 2017; 95: 030601.[Article] [Google Scholar]
- Ariga T, Tomishige M, Mizuno D. Nonequilibrium energetics of single molecule motor, kinesin-1. Biophys J 2018; 114: 509a.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ariga T, Tomishige M, Mizuno D. Experimental and theoretical energetics of walking molecular motors under fluctuating environments. Biophys Rev 2020; 12: 503–510.[Article] [Google Scholar]
- Ning L, Lou X, Ma Q, et al. Hydrodynamics-induced long-range attraction between plates in bacterial suspensions. Phys Rev Lett 2023; 131: 158301.[Article] [Google Scholar]
- Liebchen B, Löwen H. Synthetic chemotaxis and collective behavior in active matter. Acc Chem Res 2018; 51: 2982–2990.[Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao H, Košmrlj A, Datta SS. Chemotactic motility-induced phase separation. Phys Rev Lett 2023; 131: 118301.[Article] [Google Scholar]
- Suma A, Cugliandolo LF, Gonnella G. Tracer motion in an active dumbbell fluid. J Stat Mech 2016; 5: 054029.[Article] [CrossRef] [Google Scholar]
- Krishnamurthy S, Ghosh S, Chatterji D, et al. A micrometre-sized heat engine operating between bacterial reservoirs. Nat Phys 2016; 12: 1134–1138.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Martínez IA, Roldán É, Dinis L, et al. Colloidal heat engines: A review. Soft Matter 2017; 13: 22–36.[Article] [Google Scholar]
- Burkholder EW, Brady JF. Tracer diffusion in active suspensions. Phys Rev E 2017; 95: 052605.[Article] [Google Scholar]
- Saha A, Marathe R. Stochastic work extraction in a colloidal heat engine in the presence of colored noise. J Stat Mech 2019; 9: 094012.[Article] [CrossRef] [Google Scholar]
- Lee JS, Park JM, Park H. Brownian heat engine with active reservoirs. Phys Rev E 2020; 102: 032116.[Article] [Google Scholar]
- Goswami K. Work fluctuations in a generalized Gaussian active bath. Phys A-Stat Mech Appl 2021; 566: 125609.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Seyforth H, Gomez M, Rogers WB, et al. Nonequilibrium fluctuations and nonlinear response of an active bath. Phys Rev Res 2022; 4: 023043.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tociu L, Rassolov G, Fodor É, et al. Mean-field theory for the structure of strongly interacting active liquids. J Chem Phys 2022; 157: 014902.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Datta A, Pietzonka P, Barato AC. Second law for active heat engines. Phys Rev X 2022; 12: 031034.[Article] [NASA ADS] [Google Scholar]
- Feng M, Hou Z. Unraveling on kinesin acceleration in intracellular environments: A theory for active bath. Phys Rev Res 2023; 5: 013206.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Das B, Paul S, Manikandan SK, et al. Enhanced directionality of active processes in a viscoelastic bath. New J Phys 2023; 25: 093051.[Article] [Google Scholar]
- Saha TK, Ehrich J, Gavrilov M, et al. Information engine in a nonequilibrium bath. Phys Rev Lett 2023; 131: 057101.[Article] [Google Scholar]
- Semeraro M, Gonnella G, Suma A, et al. Work fluctuations for a harmonically confined active ornstein-uhlenbeck particle. Phys Rev Lett 2023; 131: 158302.[Article] [Google Scholar]
- Kim MJ, Breuer KS. Enhanced diffusion due to motile bacteria. Phys Fluids 2004; 16: L78–L81.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Maggi C, Paoluzzi M, Pellicciotta N, et al. Generalized energy equipartition in harmonic oscillators driven by active baths. Phys Rev Lett 2014; 113: 238303.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Maes C. On the second fluctuation-dissipation theorem for nonequilibrium baths. J Stat Phys 2014; 154: 705–722.[Article] [CrossRef] [MathSciNet] [Google Scholar]
- Maggi C, Marconi UMB, Gnan N, et al. Multidimensional stationary probability distribution for interacting active particles. Sci Rep 2015; 5: 10742.[Article] [Google Scholar]
- Maggi C, Paoluzzi M, Angelani L, et al. Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath. Sci Rep 2017; 7: 17588.[Article] [Google Scholar]
- Lagarde A, Dagès N, Nemoto T, et al. Colloidal transport in bacteria suspensions: From bacteria collision to anomalous and enhanced diffusion. Soft Matter 2020; 16: 7503–7512.[Article] [Google Scholar]
- Banerjee T, Jack RL, Cates ME. Tracer dynamics in one dimensional gases of active or passive particles. J Stat Mech 2022; 1: 013209.[Article] [CrossRef] [Google Scholar]
- Vicsek T, Zafeiris A. Collective motion. Phys Rep 2012; 517: 71–140.[Article] [Google Scholar]
- Sumino Y, Nagai KH, Shitaka Y, et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 2012; 483: 448–452.[Article] [CrossRef] [PubMed] [Google Scholar]
- Sokolov A, Aranson IS. Physical properties of collective motion in suspensions of bacteria. Phys Rev Lett 2012; 109: 248109.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Marchetti MC, Joanny JF, Ramaswamy S, et al. Hydrodynamics of soft active matter. Rev Mod Phys 2013; 85: 1143–1189.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu P, Zhu H, Zeng Y, et al. Oscillating collective motion of active rotors in confinement. Proc Natl Acad Sci USA 2020; 117: 11901–11907.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Loewe B, Shendruk TN. Passive Janus particles are self-propelled in active nematics. New J Phys 2022; 24: 012001.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Su J, Feng M, Du Y, et al. Motility-induced phase separation is reentrant. Commun Phys 2023; 6: 58.[Article] [Google Scholar]
- Hänggi P, Marchesoni F. Artificial brownian motors: Controlling transport on the nanoscale. Rev Mod Phys 2009; 81: 387–442.[Article] [CrossRef] [Google Scholar]
- Cates ME. Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics? Rep Prog Phys 2012; 75: 042601.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Koumakis N, Maggi C, Di Leonardo R. Directed transport of active particles over asymmetric energy barriers. Soft Matter 2014; 10: 5695–5701.[Article] [Google Scholar]
- Mano T, Delfau JB, Iwasawa J, et al. Optimal run-and-tumble-based transportation of a Janus particle with active steering. Proc Natl Acad Sci USA 2017; 114: E2580–E2589.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Granek O, Kafri Y, Tailleur J. Anomalous transport of tracers in active baths. Phys Rev Lett 2022; 129: 038001.[Article] [Google Scholar]
- Mallory SA, Valeriani C, Cacciuto A. Curvature-induced activation of a passive tracer in an active bath. Phys Rev E 2014; 90: 032309.[Article] [Google Scholar]
- Maes C, Steffenoni S. Friction and noise for a probe in a nonequilibrium fluid. Phys Rev E 2015; 91: 022128.[Article] [Google Scholar]
- Maes C. Fluctuating motion in an active environment. Phys Rev Lett 2020; 125: 208001.[Article] [Google Scholar]
- Park JT, Paneru G, Kwon C, et al. Rapid-prototyping a Brownian particle in an active bath. Soft Matter 2020; 16: 8122–8127.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Reichert J, Voigtmann T. Tracer dynamics in crowded active-particle suspensions. Soft Matter 2021; 17: 10492–10504.[Article] [Google Scholar]
- Solon A, Horowitz JM. On the Einstein relation between mobility and diffusion coefficient in an active bath. J Phys A-Math Theor 2022; 55: 184002.[Article] [CrossRef] [MathSciNet] [Google Scholar]
- Baiesi M, Maes C, Wynants B. Fluctuations and response of nonequilibrium states. Phys Rev Lett 2009; 103: 010602.[Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Ruben Gomez-Solano J, Petrosyan A, Ciliberto S, et al. Fluctuations and response in a non-equilibrium micron-sized system. J Stat Mech 2011; 1: P01008.[Article] [Google Scholar]
- Maes C, Safaverdi S, Visco P, et al. Fluctuation-response relations for nonequilibrium diffusions with memory. Phys Rev E 2013; 87: 022125.[Article] [Google Scholar]
- Basu U, Maes C. Nonequilibrium response and frenesy. J Phys-Conf Ser 2015; 638: 012001.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Maes C. Frenesy: Time-symmetric dynamical activity in nonequilibria. Phys Rep 2020; 850: 1–33.[Article] [Google Scholar]
- Maes C. Response theory: A trajectory-based approach. Front Phys 2020; 8: 229.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Krüger M, Maes C. The modified Langevin description for probes in a nonlinear medium. J Phys-Condens Matter 2017; 29: 064004.[Article] [CrossRef] [PubMed] [Google Scholar]
- Seifert U, Speck T. Fluctuation-dissipation theorem in nonequilibrium steady states. Europhys Lett 2010; 89: 10007.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mehl J, Blickle V, Seifert U, et al. Experimental accessibility of generalized fluctuation-dissipation relations for nonequilibrium steady states. Phys Rev E 2010; 82: 032401.[Article] [Google Scholar]
- Lander B, Seifert U, Speck T. Mobility and diffusion of a tagged particle in a driven colloidal suspension. EPL 2010; 92: 58001.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Esparza López C, Théry A, Lauga E. A stochastic model for bacteria-driven micro-swimmers. Soft Matter 2019; 15: 2605–2616.[Article] [CrossRef] [PubMed] [Google Scholar]
- Burkholder EW, Brady JF. Fluctuation-dissipation in active matter. J Chem Phys 2019; 150: 184901.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Démery V, Dean DS. Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields. Phys Rev E 2011; 84: 011148.[Article] [Google Scholar]
- Démery V, Bénichou O, Jacquin H. Generalized Langevin equations for a driven tracer in dense soft colloids: Construction and applications. New J Phys 2014; 16: 053032.[Article] [Google Scholar]
- Dean DS. Langevin equation for the density of a system of interacting Langevin processes. J Phys A-Math Gen 1996; 29: L613–L617.[Article] [CrossRef] [Google Scholar]
- Démery V, Dean DS. Drag forces in classical fields. Phys Rev Lett 2010; 104: 080601.[Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.