Issue |
Natl Sci Open
Volume 3, Number 4, 2024
Special Topic: Active Matter
|
|
---|---|---|
Article Number | 20230086 | |
Number of page(s) | 29 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20230086 | |
Published online | 09 April 2024 |
- Marchetti MC, Joanny JF, Ramaswamy S, et al. Hydrodynamics of soft active matter. Rev Mod Phys 2013; 85: 1143–1189.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Elgeti J, Winkler RG, Gompper G. Physics of microswimmers-single particle motion and collective behavior: A review. Rep Prog Phys 2015; 78: 056601.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Gompper G, Winkler RG, Speck T, et al. The 2020 motile active matter roadmap. J Phys-Condens Matter 2020; 32: 193001.[Article] [CrossRef] [PubMed] [Google Scholar]
- Paxton WF, Kistler KC, Olmeda CC, et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J Am Chem Soc 2004; 126: 13424–13431.[Article] [CrossRef] [PubMed] [Google Scholar]
- Howse JR, Jones RAL, Ryan AJ, et al. Self-motile colloidal particles: From directed propulsion to random walk. Phys Rev Lett 2007; 99: 048102.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jiang HR, Yoshinaga N, Sano M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys Rev Lett 2010; 105: 268302.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gangwal S, Cayre OJ, Bazant MZ, et al. Induced-charge electrophoresis of metallodielectric particles. Phys Rev Lett 2008; 100: 058302.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 2009; 9: 2243–2245.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Luijten E, Grzybowski BA, et al. Active colloids with collective mobility status and research opportunities. Chem Soc Rev 2017; 46: 5551–5569.[Article] [CrossRef] [PubMed] [Google Scholar]
- Xie H, Sun M, Fan X, et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci Robot 2019; 4: eaav8006.[Article] [Google Scholar]
- Yang M, Zhang Y, Mou F, et al. Swarming magnetic nanorobots bio-interfaced by heparinoid-polymer brushes for in vivo safe synergistic thrombolysis. Sci Adv 2023; 9: eadk7251.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zheng J, Chen J, Jin Y, et al. Photochromism from wavelength-selective colloidal phase segregation. Nature 2023; 617: 499–506.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Urso M, Ussia M, Peng X, et al. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification. Nat Commun 2023; 14: 6969.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schmidt CK, Medina-Sánchez M, Edmondson RJ, et al. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun 2020; 11: 5618.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Grosser S, Lippoldt J, Oswald L, et al. Cell and nucleus shape as an indicator of tissue fluidity in carcinoma. Phys Rev X 2021; 11: 011033.[Article] [NASA ADS] [Google Scholar]
- Ilina O, Gritsenko PG, Syga S, et al. Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat Cell Biol 2020; 22: 1103–1115.[Article] [CrossRef] [PubMed] [Google Scholar]
- Gottheil P, Lippoldt J, Grosser S, et al. State of cell unjamming correlates with distant metastasis in cancer patients. Phys Rev X 2023; 13: 031003.[Article] [NASA ADS] [Google Scholar]
- Medina-Sánchez M, Schwarz L, Meyer AK, et al. Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Lett 2016; 16: 555–561.[Article] [CrossRef] [PubMed] [Google Scholar]
- Nagel AM, Greenberg M, Shendruk TN, et al. Collective dynamics of model pili-based twitcher-mode bacilliforms. Sci Rep 2020; 10: 10747.[Article] [Google Scholar]
- Worlitzer VM, Jose A, Grinberg I, et al. Biophysical aspects underlying the swarm to biofilm transition. Sci Adv 2022; 8: eabn8152.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Palagi S, Fischer P. Bioinspired microrobots. Nat Rev Mater 2018; 3: 113–124.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Langer R. New methods of drug delivery. Science 1990; 249: 1527–1533.[Article] [CrossRef] [PubMed] [Google Scholar]
- Tran S, DeGiovanni P- Piel B, et al. Cancer nanomedicine: A review of recent success in drug delivery. Clin Transl Med 2017; 6: e44.[Article] [CrossRef] [Google Scholar]
- Kim DK, Dobson J. Nanomedicine for targeted drug delivery. J Mater Chem 2009; 19: 6294.[Article] [CrossRef] [Google Scholar]
- Liebchen B, Levis D. Chiral active matter. EPL 2022; 139: 67001.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shankar S, Souslov A, Bowick MJ, et al. Topological active matter. Nat Rev Phys 2022; 4: 380–398.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fürthauer S, Strempel M, Grill SW, et al. Active chiral fluids. Eur Phys J E 2012; 35: 89.[Article] [CrossRef] [PubMed] [Google Scholar]
- Lenz P, Joanny JF, Jülicher F, et al. Membranes with rotating motors. Phys Rev Lett 2003; 91: 108104.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Noji H, Yoshida M. The rotary machine in the cell, ATP synthase. J Biol Chem 2001; 276: 1665–1668.[Article] [CrossRef] [PubMed] [Google Scholar]
- Huang M, Hu W, Yang S, et al. Circular swimming motility and disordered hyperuniform state in an algae system. Proc Natl Acad Sci USA 2021; 118: e2100493118.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Petroff AP, Wu XL, Libchaber A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys Rev Lett 2015; 114: 158102.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tan TH, Mietke A, Li J, et al. Odd dynamics of living chiral crystals. Nature 2022; 607: 287–293.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Drescher K, Leptos KC, Tuval I, et al. Dancing Volvox: Hydrodynamic bound states of swimming algae. Phys Rev Lett 2009; 102: 168101.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mecke J, Gao Y, Ramírez Medina CA, et al. Simultaneous emergence of active turbulence and odd viscosity in a colloidal chiral active system. Commun Phys 2023; 6: 324.[Article] [Google Scholar]
- Soni V, Bililign ES, Magkiriadou S, et al. The odd free surface flows of a colloidal chiral fluid. Nat Phys 2019; 15: 1188–1194.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yan J, Bae SC, Granick S. Rotating crystals of magnetic Janus colloids. Soft Matter 2015; 11: 147–153.[Article] [Google Scholar]
- Han K, Kokot G, Das S, et al. Reconfigurable structure and tunable transport in synchronized active spinner materials. Sci Adv 2020; 6: eaaz8535.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Grzybowski BA, Stone HA, Whitesides GM. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature 2000; 405: 1033–1036.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Modin A, Ben Zion MY, Chaikin PM. Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors. Nat Commun 2023; 14: 4114.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu P, Zhu H, Zeng Y, et al. Oscillating collective motion of active rotors in confinement. Proc Natl Acad Sci USA 2020; 117: 11901–11907.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Yang X, Ren C, Cheng K, et al. Robust boundary flow in chiral active fluid. Phys Rev E 2020; 101: 022603.[Article] [Google Scholar]
- Gao Y, Balin AK, Dullens RPA, et al. Thermal analog of gimbal lock in a colloidal ferromagnetic Janus rod. Phys Rev Lett 2015; 115: 248301.[Article] [Google Scholar]
- Bililign ES, Balboa Usabiaga F, Ganan YA, et al. Motile dislocations knead odd crystals into whorls. Nat Phys 2022; 18: 212–218.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mun J, Kim M, Yang Y, et al. Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena. Light Sci Appl 2020; 9: 139.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Xiao J, Koo J, et al. Chirality-driven topological electronic structure of DNA-like materials. Nat Mater 2021; 20: 638–644.[Article] [CrossRef] [PubMed] [Google Scholar]
- Xu L, Wang X, Wang W, et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022; 601: 366–373.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kim DS, Kim M, Seo S, et al. Nature-inspired chiral structures: Fabrication methods and multifaceted applications. Biomimetics 2023; 8: 527.[Article] [CrossRef] [PubMed] [Google Scholar]
- Michaeli K, Kantor-Uriel N, Naaman R, et al. The electron’s spin and molecular chirality - How are they related and how do they affect life processes? Chem Soc Rev 2016; 45: 6478–6487.[Article] [Google Scholar]
- Arora P, Sood AK, Ganapathy R. Emergent stereoselective interactions and self-recognition in polar chiral active ellipsoids. Sci Adv 2021; 7: eabd0331.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang B, Sokolov A, Snezhko A. Reconfigurable emergent patterns in active chiral fluids. Nat Commun 2020; 11: 4401.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shah ZH, Wang S, Xian L, et al. Highly efficient chemically-driven micromotors with controlled snowman-like morphology. Chem Commun 2020; 56: 15301–15304.[Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou X, Wang S, Xian L, et al. Ionic effects in ionic diffusiophoresis in chemically driven active colloids. Phys Rev Lett 2021; 127: 168001.[Article] [Google Scholar]
- Banerjee D, Souslov A, Abanov AG, et al. Odd viscosity in chiral active fluids. Nat Commun 2017; 8: 1573.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Fruchart M, Scheibner C, Vitelli V. Odd viscosity and odd elasticity. Annu Rev Condens Matter Phys 2023; 14: 471–510.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Scheibner C, Souslov A, Banerjee D, et al. Odd elasticity. Nat Phys 2020; 16: 475–480.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Avron JE. Odd viscosity. J Statistical Phys 1998; 92: 543–557.[Article] [CrossRef] [MathSciNet] [Google Scholar]
- Khain T, Scheibner C, Fruchart M, et al. Stokes flows in three-dimensional fluids with odd and parity-violating viscosities. J Fluid Mech 2022; 934: A23.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Hosaka Y, Komura S, Andelman D. Nonreciprocal response of a two-dimensional fluid with odd viscosity. Phys Rev E 2021; 103: 042610.[Article] [Google Scholar]
- Han M, Fruchart M, Scheibner C, et al. Fluctuating hydrodynamics of chiral active fluids. Nat Phys 2021; 17: 1260–1269.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Souslov A, Gromov A, Vitelli V. Anisotropic odd viscosity via a time-modulated drive. Phys Rev E 2020; 101: 052606.[Article] [Google Scholar]
- Yang Q, Zhu H, Liu P, et al. Topologically protected transport of cargo in a chiral active fluid aided by odd-viscosity-enhanced depletion interactions. Phys Rev Lett 2021; 126: 198001.[Article] [Google Scholar]
- Hargus C, Epstein JM, Mandadapu KK. Odd diffusivity of chiral random motion. Phys Rev Lett 2021; 127: 178001.[Article] [Google Scholar]
- Kalz E, Vuijk HD, Abdoli I, et al. Collisions enhance self-diffusion in odd-diffusive systems. Phys Rev Lett 2022; 129: 090601.[Article] [Google Scholar]
- Braverman L, Scheibner C, VanSaders B, et al. Topological defects in solids with odd elasticity. Phys Rev Lett 2021; 127: 268001.[Article] [Google Scholar]
- Chen Y, Li X, Scheibner C, et al. Realization of active metamaterials with odd micropolar elasticity. Nat Commun 2021; 12: 5935.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lapa MF, Hughes TL. Swimming at low Reynolds number in fluids with odd, or Hall, viscosity. Phys Rev E 2014; 89: 043019.[Article] [Google Scholar]
- Yasuda K, Ishimoto K, Kobayashi A, et al. Time-correlation functions for odd Langevin systems. J Chem Phys 2022; 157: 095101.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Reichhardt CJO, Reichhardt C. Active rheology in odd-viscosity systems. EPL 2022; 137: 66004.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lou X, Yang Q, Ding Y, et al. Odd viscosity-induced Hall-like transport of an active chiral fluid. Proc Natl Acad Sci USA 2022; 119: e2201279119.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Banerjee D, Vitelli V, Jülicher F, et al. Active viscoelasticity of odd materials. Phys Rev Lett 2021; 126: 138001.[Article] [Google Scholar]
- Souslov A, Dasbiswas K, Fruchart M, et al. Topological waves in fluids with odd viscosity. Phys Rev Lett 2019; 122: 128001.[Article] [Google Scholar]
- Reichhardt C, Reichhardt CJO. Active microrheology, Hall effect, and jamming in chiral fluids. Phys Rev E 2019; 100: 012604.[Article] [Google Scholar]
- Banerjee D, Souslov A, Vitelli V. Hydrodynamic correlation functions of chiral active fluids. Phys Rev Fluids 2022; 7: 043301.[Article] [Google Scholar]
- Rao P, Bradlyn B. Resolving Hall and dissipative viscosity ambiguities via boundary effects. Phys Rev B 2023; 107: 075148.[Article] [Google Scholar]
- Toner J, Tu Y. Flocks, herds, and schools: A quantitative theory of flocking. Phys Rev E 1998; 58: 4828–4858.[Article] [Google Scholar]
- Baskaran A, Marchetti MC. Statistical mechanics and hydrodynamics of bacterial suspensions. Proc Natl Acad Sci USA 2009; 106: 15567–15572.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Doostmohammadi A, Ignés-Mullol J, Yeomans JM, et al. Active nematics. Nat Commun 2018; 9: 3246.[Article] [CrossRef] [PubMed] [Google Scholar]
- Reinken H, Klapp SHL, Bär M, et al. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions. Phys Rev E 2018; 97: 022613.[Article] [Google Scholar]
- Steffenoni S, Falasco G, Kroy K. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions. Phys Rev E 2017; 95: 052142.[Article] [Google Scholar]
- Landau L, Lifshitz E. Fluid mechanics, Course of Theoretical Physics. 2nd Ed. Oxford: Pergamon Press, 1987 [Google Scholar]
- Markovich T, Lubensky TC. Odd viscosity in active matter: Microscopic origin and 3D effects. Phys Rev Lett 2021; 127: 048001.[Article] [Google Scholar]
- Dahler JS, Scriven LE. Angular momentum of continua. Nature 1961; 192: 36–37.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mecke J, Ripoll M. Birotor hydrodynamic microswimmers: From single to collective behaviour. EPL 2023; 142: 27001.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hosaka Y, Komura S, Andelman D. Hydrodynamic lift of a two-dimensional liquid domain with odd viscosity. Phys Rev E 2021; 104: 064613.[Article] [Google Scholar]
- Ganeshan S, Abanov AG. Odd viscosity in two-dimensional incompressible fluids. Phys Rev Fluids 2017; 2: 094101.[Article] [Google Scholar]
- Purcell EM. Life at low Reynolds number. Am J Phys 1977; 45: 3–11.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yuan H, Olvera de la Cruz M. Stokesian dynamics with odd viscosity. Phys Rev Fluids 2023; 8: 054101.[Article] [Google Scholar]
- Abanov A, Can T, Ganeshan S. Odd surface waves in two-dimensional incompressible fluids. SciPost Phys 2018; 5: 010.[Article] [CrossRef] [Google Scholar]
- Hosaka Y, Golestanian R, Vilfan A. Lorentz reciprocal theorem in fluids with odd viscosity. Phys Rev Lett 2023; 131: 178303.[Article] [Google Scholar]
- Hosaka Y, Andelman D, Komura S. Pair dynamics of active force dipoles in an odd-viscous fluid. Eur Phys J E 2023; 46: 18.[Article] [CrossRef] [PubMed] [Google Scholar]
- Hosaka Y, Golestanian R, Daddi-Moussa-Ider A. Hydrodynamics of an odd active surfer in a chiral fluid. New J Phys 2023; 25: 083046.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Lier R, Duclut C, Bo S, et al. Lift force in odd compressible fluids. Phys Rev E 2023; 108: L023101.[Article] [Google Scholar]
- Tsai JC, Ye F, Rodriguez J, et al. A chiral granular gas. Phys Rev Lett 2005; 94: 214301.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Massana-Cid H, Levis D, Hernández RJH, et al. Arrested phase separation in chiral fluids of colloidal spinners. Phys Rev Res 2021; 3: L042021.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Fily Y, Baskaran A, Marchetti MC. Cooperative self-propulsion of active and passive rotors. Soft Matter 2012; 8: 3002.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Llopis I, Pagonabarraga I. Hydrodynamic regimes of active rotators at fluid interfaces. Eur Phys J E 2008; 26: 103–113.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Alert R, Casademunt J, Joanny JF. Active turbulence. Annu Rev Condens Matter Phys 2022; 13: 143–170.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Reeves CJ, Aranson IS, Vlahovska PM. Emergence of lanes and turbulent-like motion in active spinner fluid. Commun Phys 2021,4: 92. [Google Scholar]
- Hanna S, Hess W, Klein R. Self-diffusion of spherical Brownian particles with hard-core interaction. Physica A-Statistical Mech its Appl 1982; 111: 181–199.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- van Roon DM, Volpe G, Telo da Gama MM, et al. The role of disorder in the motion of chiral active particles in the presence of obstacles. Soft Matter 2022; 18: 6899–6906.[Article] [Google Scholar]
- Vega Reyes F, López-Castaño MA, Rodríguez-Rivas Á. Diffusive regimes in a two-dimensional chiral fluid. Commun Phys 2022; 5: 256.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Petroff AP, Libchaber A. Nucleation of rotating crystals by Thiovulummajus bacteria. New J Phys 2018; 20: 015007.[Article] [Google Scholar]
- Surówka P, Souslov A, Jülicher F, et al. Odd Cosserat elasticity in active materials. Phys Rev E 2023; 108: 064609.[Article] [Google Scholar]
- Poncet A, Bartolo D. When soft crystals defy Newton’s Third Law: Nonreciprocal mechanics and dislocation motility. Phys Rev Lett 2022; 128: 048002.[Article] [Google Scholar]
- Dasbiswas K, Mandadapu KK, Vaikuntanathan S. Topological localization in out-of-equilibrium dissipative systems. Proc Natl Acad Sci USA 2018; 115: E9031–E9040.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Jia LL, Irvine WTM, Shelley MJ. Incompressible active phases at an interface. Part 1. Formulation and axisymmetric odd flows. J Fluid Mech 2022; 951: A36.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sone K, Ashida Y. Anomalous topological active matter. Phys Rev Lett 2019; 123: 205502.[Article] [Google Scholar]
- Scheibner C, Irvine WTM, Vitelli V. Non-hermitian band topology and skin modes in active elastic media. Phys Rev Lett 2020; 125: 118001.[Article] [Google Scholar]
- Lee CH, Thomale R. Anatomy of skin modes and topology in non-Hermitian systems. Phys Rev B 2019; 99: 201103.[Article] [Google Scholar]
- Sone K, Ashida Y, Sagawa T. Exceptional non-Hermitian topological edge mode and its application to active matter. Nat Commun 2020; 11: 5745.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- van Zuiden BC, Paulose J, Irvine WTM, et al. Spatiotemporal order and emergent edge currents in active spinner materials. Proc Natl Acad Sci USA 2016; 113: 12919–12924.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Götze IO, Gompper G. Dynamic self-assembly and directed flow of rotating colloids in microchannels. Phys Rev E 2011; 84: 031404.[Article] [Google Scholar]
- Götze IO, Gompper G. Flow generation by rotating colloids in planar microchannels. EPL 2010; 92: 64003.[Article] [CrossRef] [Google Scholar]
- Scholz C, Ldov A, Pöschel T, et al. Surfactants and rotelles in active chiral fluids. Sci Adv 2021; 7: eabf8998.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Scholz C, Engel M, Pöschel T. Rotating robots move collectively and self-organize. Nat Commun 2018; 9: 931.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yeo K, Lushi E, Vlahovska PM. Collective dynamics in a binary mixture of hydrodynamically coupled microrotors. Phys Rev Lett 2015; 114: 188301.[Article] [CrossRef] [PubMed] [Google Scholar]
- Yeo K, Lushi E, Vlahovska PM. Dynamics of inert spheres in active suspensions of micro-rotors. Soft Matter 2016; 12: 5645–5652.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Spellings M, Engel M, Klotsa D, et al. Shape control and compartmentalization in active colloidal cells. Proc Natl Acad Sci USA 2015; 112: E4642–E4650.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mijalkov M, Volpe G. Sorting of chiral microswimmers. Soft Matter 2013; 9: 6376.[Article] [Google Scholar]
- Nishiguchi D, Aranson IS, Snezhko A, et al. Engineering bacterial vortex lattice via direct laser lithography. Nat Commun 2018; 9: 4486.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Souslov A, van Zuiden BC, Bartolo D, et al. Topological sound in active-liquid metamaterials. Nat Phys 2017; 13: 1091–1094.[Article] [Google Scholar]
- Li W, Li L, Shi Q, et al. Chiral separation of rotating robots through obstacle arrays. Powder Tech 2022; 407: 117671.[Article] [CrossRef] [Google Scholar]
- Toner J, Tu Y. Long-range order in a two-dimensional dynamical XY model: How birds fly together. Phys Rev Lett 1995; 75: 4326–4329.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Farhadi S, Machaca S, Aird J, et al. Dynamics and thermodynamics of air-driven active spinners. Soft Matter 2018; 14: 5588–5594.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Workamp M, Ramirez G, Daniels KE, et al. Symmetry-reversals in chiral active matter. Soft Matter 2018; 14: 5572–5580.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- López-Castaño MA, Márquez Seco A, Márquez Seco A, et al. Chirality transitions in a system of active flat spinners. Phys Rev Res 2022; 4: 033230.[Article] [CrossRef] [Google Scholar]
- Petroff AP, Whittington C, Kudrolli A. Density-mediated spin correlations drive edge-to-bulk flow transition in active chiral matter. Phys Rev E 2023; 108: 014609.[Article] [Google Scholar]
- Yan J, Han M, Zhang J, et al. Reconfiguring active particles by electrostatic imbalance. Nat Mater 2016; 15: 1095–1099.[Article] [Google Scholar]
- Kümmel F, ten Hagen B, Wittkowski R, et al. Circular motion of asymmetric self-propelling particles. Phys Rev Lett 2013; 110: 198302.[Article] [CrossRef] [PubMed] [Google Scholar]
- Lauga E, DiLuzio WR, Whitesides GM, et al. Swimming in circles: Motion of bacteria near solid boundaries. Biophys J 2006; 90: 400–412.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Riedel IH, Kruse K, Howard J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 2005; 309: 300–303.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Utada AS, Bennett RR, Fong JCN, et al. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat Commun 2014; 5: 4913.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Schmidt F, Liebchen B, Löwen H, et al. Light-controlled assembly of active colloidal molecules. J Chem Phys 2019; 150: 094905.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lauga E, Powers TR. The hydrodynamics of swimming microorganisms. Rep Prog Phys 2009; 72: 096601.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Han M, Yan J, Granick S, et al. Effective temperature concept evaluated in an active colloid mixture. Proc Natl Acad Sci USA 2017; 114: 7513–7518.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fernandez-Rodriguez MA, Grillo F, Alvarez L, et al. Feedback-controlled active brownian colloids with space-dependent rotational dynamics. Nat Commun 2020; 11: 4223.[Article] [CrossRef] [PubMed] [Google Scholar]
- Erglis K, Wen Q, Ose V, et al. Dynamics of magnetotactic bacteria in a rotating magnetic field. Biophys J 2007; 93: 1402–1412.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Caprini L, Löwen H, Marini Bettolo Marconi U. Chiral active matter in external potentials. Soft Matter 2023; 19: 6234–6246.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Du S, Wang H, Zhou C, et al. Motor and rotor in one: Light-active ZnO/Au twinned rods of tunable motion modes. J Am Chem Soc 2020; 142: 2213–2217.[Article] [CrossRef] [PubMed] [Google Scholar]
- Liebchen B, Levis D. Collective behavior of chiral active matter: Pattern formation and enhanced flocking. Phys Rev Lett 2017; 119: 058002.[Article] [Google Scholar]
- Li JR, Zhu W, Li JJ, et al. Chirality-induced directional rotation of a symmetric gear in a bath of chiral active particles. New J Phys 2023; 25: 043031.[Article] [CrossRef] [MathSciNet] [Google Scholar]
- Denk J, Huber L, Reithmann E, et al. Active curved polymers form vortex patterns on membranes. Phys Rev Lett 2016; 116: 178301.[Article] [Google Scholar]
- Dunajova Z, Mateu BP, Radler P, et al. Chiral and nematic phases of flexible active filaments. Nat Phys 2023; 19: 1916–1926.[Article] [Google Scholar]
- Liu Y, Yang Y, Li B, et al. Collective oscillation in dense suspension of self-propelled chiral rods. Soft Matter 2019; 15: 2999–3007.[Article] [Google Scholar]
- Kreienkamp KL, Klapp SHL. Clustering and flocking of repulsive chiral active particles with non-reciprocal couplings. New J Phys 2022; 24: 123009.[Article] [Google Scholar]
- Lei QL, Ciamarra MP, Ni R. Nonequilibrium strongly hyperuniform fluids of circle active particles with large local density fluctuations. Sci Adv 2019; 5: eaau7423.[Article] [Google Scholar]
- Torquato S. Hyperuniform states of matter. Phys Rep 2018; 745: 1–95.[Article] [Google Scholar]
- Zhang B, Snezhko A. Hyperuniform active chiral fluids with tunable internal structure. Phys Rev Lett 2022; 128: 218002.[Article] [Google Scholar]
- Wagner M, Roca-Bonet S, Ripoll M. Collective behavior of thermophoretic dimeric active colloids in three-dimensional bulk. Eur Phys J E 2021; 44: 43.[Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Stenhammar J, Tiribocchi A, Allen RJ, et al. Continuum theory of phase separation kinetics for active brownian particles. Phys Rev Lett 2013; 111: 145702.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Qi K, Westphal E, Gompper G, et al. Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion. Commun Phys 2022; 5: 49.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Oppenheimer N, Stein DB, Zion MYB, et al. Hyperuniformity and phase enrichment in vortex and rotor assemblies. Nat Commun 2022; 13: 804.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lei QL, Ni R. Hydrodynamics of random-organizing hyperuniform fluids. Proc Natl Acad Sci USA 2019; 116: 22983–22989.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Liu R, Gong J, Yang M, et al. Local rotational jamming and multi-stage hyperuniformities in an active spinner system. Chin Phys Lett 2023; 40: 126402.[Article] [Google Scholar]
- Aggarwal A, Kirkinis E, Olvera de la Cruz M. Thermocapillary migrating odd viscous droplets. Phys Rev Lett 2023; 131: 198201.[Article] [Google Scholar]
- McNeill JM, Choi YC, Cai YY, et al. Three-dimensionally complex phase behavior and collective phenomena in mixtures of acoustically powered chiral microspinners. ACS Nano 2023; 17: 7911–7919.[Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.