Issue |
Natl Sci Open
Volume 3, Number 4, 2024
Special Topic: Active Matter
|
|
---|---|---|
Article Number | 20240005 | |
Number of page(s) | 36 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20240005 | |
Published online | 17 May 2024 |
- Ramaswamy S. The mechanics and statistics of active matter. Annu Rev Condens Matter Phys 2010; 1: 323–345.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bechinger C, Di Leonardo R, Löwen H, et al. Active particles in complex and crowded environments. Rev Mod Phys 2016; 88: 045006.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Marchetti MC, Joanny JF, Ramaswamy S, et al. Hydrodynamics of soft active matter. Rev Mod Phys 2013; 85: 1143–1189.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Menzel AM. Tuned, driven, and active soft matter. Phys Rep 2015; 554: 1–45.[Article] [Google Scholar]
- Cates ME, Tailleur J. Motility-induced phase separation. Annu Rev Condens Matter Phys 2015; 6: 219–244.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Reichhardt CJO, Reichhardt C. Ratchet effects in active matter systems. Annu Rev Condens Matter Phys 2017; 8: 51–75.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bär M, Groβmann R, Heidenreich S, et al. Self-propelled rods: Insights and perspectives for active matter. Annu Rev Condens Matter Phys 2020; 11: 441–466.[Article] [CrossRef] [Google Scholar]
- Chaté H. Dry aligning dilute active matter. Annu Rev Condens Matter Phys 2020; 11: 189–212.[Article] [CrossRef] [Google Scholar]
- Gompper G, Winkler RG, Speck T, et al. The 2020 motile active matter roadmap. J Phys-Condens Matter 2020; 32: 193001.[Article] [CrossRef] [PubMed] [Google Scholar]
- Fruchart M, Scheibner C, Vitelli V. Odd viscosity and odd elasticity. Annu Rev Condens Matter Phys 2023; 14: 471–510.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Vicsek T, Zafeiris A. Collective motion. Phys Rep 2012; 517: 71–140.[Article] [Google Scholar]
- Elgeti J, Winkler RG, Gompper G. Physics of microswimmers-single particle motion and collective behavior: A review. Rep Prog Phys 2015; 78: 056601.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Zhang J, Luijten E, Grzybowski BA, et al. Active colloids with collective mobility status and research opportunities. Chem Soc Rev 2017; 46: 5551–5569.[Article] [CrossRef] [PubMed] [Google Scholar]
- Ma Z, Yang M, Ni R. Dynamic assembly of active colloids: Theory and simulation. Adv Theor Sims 2020; 3: 2000021.[Article] [CrossRef] [Google Scholar]
- Tsang ACH, Demir E, Ding Y, et al. Roads to smart artificial microswimmers. Adv Intell Syst 2020; 2: 1900137.[Article] [Google Scholar]
- Rismagilov RF, Schwartz A, Bowden N, et al. Autonomous movement and self-assembly. Angew Chem Int Ed 2002; 41: 652–654 [CrossRef] [Google Scholar]
- Paxton WF, Kistler KC, Olmeda CC, et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J Am Chem Soc 2004; 126: 13424–13431.[Article] [CrossRef] [PubMed] [Google Scholar]
- Dreyfus R, Baudry J, Roper ML, et al. Microscopic artificial swimmers. Nature 2005; 437: 862–865.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Howse JR, Jones RAL, Ryan AJ, et al. Self-motile colloidal particles: From directed propulsion to random walk. Phys Rev Lett 2007; 99: 048102.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tierno P, Golestanian R, Pagonabarraga I, et al. Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys Rev Lett 2008; 101: 218304.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 2009; 9: 2243–2245.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jiang HR, Yoshinaga N, Sano M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys Rev Lett 2010; 105: 268302.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sanchez S, Ananth AN, Fomin VM, et al. Superfast motion of catalytic microjet engines at physiological temperature. J Am Chem Soc 2011; 133: 14860–14863.[Article] [CrossRef] [PubMed] [Google Scholar]
- Thutupalli S, Seemann R, Herminghaus S. Swarming behavior of simple model squirmers. New J Phys 2011; 13: 073021.[Article] [Google Scholar]
- Buttinoni I, Volpe G, Kümmel F, et al. Active Brownian motion tunable by light. J Phys-Condens Matter 2012; 24: 284129.[Article] [CrossRef] [PubMed] [Google Scholar]
- Kümmel F, ten Hagen B, Wittkowski R, et al. Circular motion of asymmetric self-propelling particles. Phys Rev Lett 2013; 110: 198302.[Article] [CrossRef] [PubMed] [Google Scholar]
- Volpe G, Buttinoni I, Vogt D, et al. Microswimmers in patterned environments. Soft Matter 2011; 7: 8810.[Article] [Google Scholar]
- Wang W, Castro LA, Hoyos M, et al. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 2012; 6: 6122–6132.[Article] [CrossRef] [PubMed] [Google Scholar]
- Wilson DA, Nolte RJM, van Hest JCM. Autonomous movement of platinum-loaded stomatocytes. Nat Chem 2012; 4: 268–274.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Bricard A, Caussin JB, Desreumaux N, et al. Emergence of macroscopic directed motion in populations of motile colloids. Nature 2013; 503: 95–98.[Article] [CrossRef] [PubMed] [Google Scholar]
- Palacci J, Sacanna S, Steinberg AP, et al. Living crystals of light-activated colloidal surfers. Science 2013; 339: 936–940.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Izri Z, van der Linden MN, Michelin S, et al. Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion. Phys Rev Lett 2014; 113: 248302.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li J, Singh VV, Sattayasamitsathit S, et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 2014; 8: 11118–11125.[Article] [CrossRef] [PubMed] [Google Scholar]
- Ma X, Hahn K, Sanchez S. Catalytic mesoporous janus nanomotors for active cargo delivery. J Am Chem Soc 2015; 137: 4976–4979.[Article] [CrossRef] [PubMed] [Google Scholar]
- Nishiguchi D, Sano M. Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field. Phys Rev E 2015; 92: 052309.[Article] [Google Scholar]
- Joseph A, Contini C, Cecchin D, et al. Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing. Sci Adv 2017; 3: e1700362.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ben Zion MY, Fersula J, Bredeche N, et al. Morphological computation and decentralized learning in a swarm of sterically interacting robots. Sci Robot 2023; 8: eabo6140.[Article] [Google Scholar]
- Deblais A, Barois T, Guerin T, et al. Boundaries control collective dynamics of inertial self-propelled robots. Phys Rev Lett 2018; 120: 188002.[Article] [Google Scholar]
- Ho I, Pucci G, Oza AU, et al. Capillary surfers: Wave-driven particles at a vibrating fluid interface. Phys Rev Fluids 2023; 8: L112001.[Article] [Google Scholar]
- O’Byrne J, Kafri Y, Tailleur J, et al. Time irreversibility in active matter, from micro to macro. Nat Rev Phys 2022; 4: 167–183.[Article] [CrossRef] [Google Scholar]
- Zöttl A, Stark H. Emergent behavior in active colloids. J Phys-Condens Matter 2016; 28: 253001.[Article] [CrossRef] [Google Scholar]
- Löwen H. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. J Chem Phys 2020; 152: 040901.[Article] [CrossRef] [PubMed] [Google Scholar]
- Sprenger AR, Caprini L, Löwen H, et al. Dynamics of active particles with translational and rotational inertia. J Phys-Condens Matter 2023; 35: 305101.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Scholz C, Jahanshahi S, Ldov A, et al. Inertial delay of self-propelled particles. Nat Commun 2018; 9: 5156.[Article] [CrossRef] [PubMed] [Google Scholar]
- Gutierrez-Martinez LL, Sandoval M. Inertial effects on trapped active matter. J Chem Phys 2020; 153: 044906.[Article] [CrossRef] [PubMed] [Google Scholar]
- ten Hagen B, van Teeffelen S, Löwen H. Brownian motion of a self-propelled particle. J Phys-Condens Matter 2011; 23: 194119.[Article] [CrossRef] [PubMed] [Google Scholar]
- Sandoval M, Dagdug L. Effective diffusion of confined active Brownian swimmers. Phys Rev E 2014; 90: 062711.[Article] [Google Scholar]
- Yamada D, Hondou T, Sano M. Coherent dynamics of an asymmetric particle in a vertically vibrating bed. Phys Rev E 2003; 67: 040301.[Article] [Google Scholar]
- Kubo Y, Inagaki S, Ichikawa M, et al. Mode bifurcation of a bouncing dumbbell with chirality. Phys Rev E 2015; 91: 052905.[Article] [Google Scholar]
- Dorbolo S, Volfson D, Tsimring L, et al. Dynamics of a bouncing dimer. Phys Rev Lett 2005; 95: 044101.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Koumakis N, Gnoli A, Maggi C, et al. Mechanism of self-propulsion in 3D-printed active granular particles. New J Phys 2016; 18: 113046.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tsai JC, Ye F, Rodriguez J, et al. A chiral granular gas. Phys Rev Lett 2005; 94: 214301.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Scholz C, D’Silva S, Pöschel T. Ratcheting and tumbling motion of vibrots. New J Phys 2016; 18: 123001.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhang R, Zhao Z, Zheng X, et al. Insight into the drift motion of a bouncing asymmetric dimer. J Comput Nonlinear Dyn 2019; 14: 064501.[Article] [CrossRef] [Google Scholar]
- von Gehlen S, Evstigneev M, Reimann P. Ratchet effect of a dimer with broken friction symmetry in a symmetric potential. Phys Rev E 2009; 79: 031114.[Article] [Google Scholar]
- von Gehlen S, Evstigneev M, Reimann P. Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom. Phys Rev E 2008; 77: 031136.[Article] [Google Scholar]
- Xu C, Zheng N, Wang LP, et al. Self-propulsion of a grain-filled dimer in a vertically vibrated channel. Sci Rep 2017; 7: 14193.[Article] [Google Scholar]
- Kumar N, Ramaswamy S, Sood AK. Symmetry properties of the large-deviation function of the velocity of a self-propelled polar particle. Phys Rev Lett 2011; 106: 118001.[Article] [CrossRef] [PubMed] [Google Scholar]
- Kumar N, Soni H, Ramaswamy S, et al. Anisotropic isometric fluctuation relations in experiment and theory on a self-propelled rod. Phys Rev E 2015; 91: 030102.[Article] [Google Scholar]
- Li H, Yang X, Zhang H. Symmetry properties of fluctuations in an actively driven rotor. Chin Phys B 2020; 29: 060502.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gupta RK, Kant R, Soni H, et al. Active nonreciprocal attraction between motile particles in an elastic medium. Phys Rev E 2022; 105: 064602.[Article] [Google Scholar]
- Walsh L, Wagner CG, Schlossberg S, et al. Noise and diffusion of a vibrated self-propelled granular particle. Soft Matter 2017; 13: 8964–8968.[Article] [Google Scholar]
- Dauchot O, Démery V. Dynamics of a self-propelled particle in a harmonic trap. Phys Rev Lett 2019; 122: 068002.[Article] [Google Scholar]
- Tapia-Ignacio C, Gutierrez-Martinez LL, Sandoval M. Trapped active toy robots: Theory and experiment. J Stat Mech 2021; 5: 053404.[Article] [CrossRef] [Google Scholar]
- Leoni M, Paoluzzi M, Eldeen S, et al. Surfing and crawling macroscopic active particles under strong confinement: Inertial dynamics. Phys Rev Res 2020; 2: 043299.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Li S, Ozkan-Aydin Y, Xiao C, et al. Field-mediated locomotor dynamics on highly deformable surfaces. Proc Natl Acad Sci USA 2022; 119: e2113912119.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Horvath D, Slabý C, Tomori Z, et al. Bouncing dynamics of inertial self-propelled particles reveals directional asymmetry. Phys Rev E 2023; 107: 024603.[Article] [Google Scholar]
- Polin M, Tuval I, Drescher K, et al. Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 2009; 325: 487–490.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Murali A, Dolai P, Krishna A, et al. Geometric constraints alter the emergent dynamics of an active particle. Phys Rev Res 2022; 4: 013136.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Barois T, Boudet JF, Lintuvuori JS, et al. Sorting and extraction of self-propelled chiral particles by polarized wall currents. Phys Rev Lett 2020; 125: 238003.[Article] [Google Scholar]
- Kumar N, Gupta RK, Soni H, et al. Trapping and sorting active particles: Motility-induced condensation and smectic defects. Phys Rev E 2019; 99: 032605.[Article] [Google Scholar]
- Li W, Li L, Shi Q, et al. Chiral separation of rotating robots through obstacle arrays. Powder Tech 2022; 407: 117671.[Article] [CrossRef] [Google Scholar]
- Rieser JM, Schiebel PE, Pazouki A, et al. Dynamics of scattering in undulatory active collisions. Phys Rev E 2019; 99: 022606.[Article] [Google Scholar]
- Patterson GA. Bistability in orbital trajectories of a chiral self-propelled particle interacting with an external field. Phys Rev E 2022; 106: 014615.[Article] [Google Scholar]
- Narayan V, Ramaswamy S, Menon N. Long-lived giant number fluctuations in a swarming granular nematic. Science 2007; 317: 105–108.[Article] [CrossRef] [PubMed] [Google Scholar]
- Deseigne J, Dauchot O, Chaté H. Collective motion of vibrated polar disks. Phys Rev Lett 2010; 105: 098001.[Article] [CrossRef] [PubMed] [Google Scholar]
- Deseigne J, Léonard S, Dauchot O, et al. Vibrated polar disks: Spontaneous motion, binary collisions, and collective dynamics. Soft Matter 2012; 8: 5629.[Article] [Google Scholar]
- Weber CA, Hanke T, Deseigne J, et al. Long-range ordering of vibrated polar disks. Phys Rev Lett 2013; 110: 208001.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Takatori SC, Yan W, Brady JF. Swim pressure: Stress generation in active matter. Phys Rev Lett 2014; 113: 028103.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Solon AP, Fily Y, Baskaran A, et al. Pressure is not a state function for generic active fluids. Nat Phys 2015; 11: 673–678.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yan W, Brady JF. The force on a boundary in active matter. J Fluid Mech 2015; 785: R1.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Mallory SA, Šarić A, Valeriani C, et al. Anomalous thermomechanical properties of a self-propelled colloidal fluid. Phys Rev E 2014; 89: 052303.[Article] [Google Scholar]
- Ginot F, Theurkauff I, Levis D, et al. Nonequilibrium equation of state in suspensions of active colloids. Phys Rev X 2015; 5: 011004.[Article] [NASA ADS] [Google Scholar]
- Marini Bettolo Marconi U, Maggi C, Melchionna S. Pressure and surface tension of an active simple liquid: A comparison between kinetic, mechanical and free-energy based approaches. Soft Matter 2016; 12: 5727–5738.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sandoval M. Pressure and diffusion of active matter with inertia. Phys Rev E 2020; 101: 012606.[Article] [Google Scholar]
- Junot G, Briand G, Ledesma-Alonso R, et al. Active versus passive hard disks against a membrane: mechanical pressure and instability. Phys Rev Lett 2017; 119: 028002.[Article] [Google Scholar]
- Fily Y, Kafri Y, Solon AP, et al. Mechanical pressure and momentum conservation in dry active matter. J Phys A-Math Theor 2018; 51: 044003.[Article] [CrossRef] [MathSciNet] [Google Scholar]
- Row H, Brady JF. Reverse osmotic effect in active matter. Phys Rev E 2020; 101: 062604.[Article] [Google Scholar]
- Boudet JF, Jagielka J, Guerin T, et al. Effective temperature and dissipation of a gas of active particles probed by the vibrations of a flexible membrane. Phys Rev Res 2022; 4: L042006.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Scholz C, Pöschel T. Velocity distribution of a homogeneously driven two-dimensional granular gas. Phys Rev Lett 2017; 118: 198003.[Article] [Google Scholar]
- Workamp M, Ramirez G, Daniels KE, et al. Symmetry-reversals in chiral active matter. Soft Matter 2018; 14: 5572–5580.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Farhadi S, Machaca S, Aird J, et al. Dynamics and thermodynamics of air-driven active spinners. Soft Matter 2018; 14: 5588–5594.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Torres Menéndez H, Altshuler E, Brilliantov NV, et al. Lack of collective motion in granular gases of rotators. New J Phys 2022; 24: 073002.[Article] [CrossRef] [Google Scholar]
- Cheng K, Liu P, Yang M, et al. Experimental investigation of active noise on a rotor in an active granular bath. Soft Matter 2022; 18: 2541–2548.[Article] [Google Scholar]
- Xiao H, Liu AJ, Durian DJ. Probing gardner physics in an active quasithermal pressure-controlled granular system of noncircular particles. Phys Rev Lett 2022; 128: 248001.[Article] [Google Scholar]
- Engbring K, Boriskovsky D, Roichman Y, et al. A nonlinear fluctuation-dissipation test for markovian systems. Phys Rev X 2023; 13: 021034.[Article] [NASA ADS] [Google Scholar]
- Daniels LJ, Park Y, Lubensky TC, et al. Dynamics of gas-fluidized granular rods. Phys Rev E 2009; 79: 041301.[Article] [Google Scholar]
- Kudrolli A. Concentration dependent diffusion of self-propelled rods. Phys Rev Lett 2010; 104: 088001.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yadav V, Kudrolli A. Diffusion of granular rods on a rough vibrated substrate. Eur Phys J E 2012; 35: 104.[Article] [CrossRef] [PubMed] [Google Scholar]
- Vega Reyes F, López-Castaño MA, Rodríguez-Rivas Á. Diffusive regimes in a two-dimensional chiral fluid. Commun Phys 2022; 5: 256.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Narayan V, Menon N, Ramaswamy S. Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic, and smectic correlations. J Stat Mech 2006; 2006: P01005.[Article] [CrossRef] [Google Scholar]
- Kudrolli A, Lumay G, Volfson D, et al. Swarming and swirling in self-propelled polar granular rods. Phys Rev Lett 2008; 100: 058001.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kumar N, Soni H, Ramaswamy S, et al. Flocking at a distance in active granular matter. Nat Commun 2014; 5: 4688.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- López-Castaño MA, Márquez Seco A, Márquez Seco A, et al. Chirality transitions in a system of active flat spinners. Phys Rev Res 2022; 4: 033230.[Article] [CrossRef] [Google Scholar]
- Li W, Li L, Shi Q, et al. Spontaneous population oscillation of confined active granular particles. Soft Matter 2022; 18: 5459–5464.[Article] [Google Scholar]
- Zheng E, Brandenbourger M, Robinet L, et al. Self-oscillation and synchronization transitions in elastoactive structures. Phys Rev Lett 2023; 130: 178202.[Article] [Google Scholar]
- Baconnier P, Shohat D, López CH, et al. Selective and collective actuation in active solids. Nat Phys 2022; 18: 1234–1239.[Article] [Google Scholar]
- Baconnier P, Shohat D, Dauchot O. Discontinuous tension-controlled transition between collective actuations in active solids. Phys Rev Lett 2023; 130: 028201.[Article] [Google Scholar]
- Angelani L, di Leonardo R, Ruocco G. Self-starting micromotors in a bacterial bath. Phys Rev Lett 2009; 102: 048104.[Article] [Google Scholar]
- Sokolov A, Apodaca MM, Grzybowski BA, et al. Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA 2010; 107: 969–974.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Maggi C, Simmchen J, Saglimbeni F, et al. Self-assembly of micromachining systems powered by janus micromotors. Small 2016; 12: 446–451.[Article] [Google Scholar]
- Li H, Zhang HP. Asymmetric gear rectifies random robot motion. Europhys Lett 2013; 102: 50007.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Jerez MJY, Bonachita MA, Confesor MNP. Dynamics of a ratchet gear powered by an active granular bath. Phys Rev E 2020; 101: 022604.[Article] [Google Scholar]
- Li H, Wang C, Tian W, et al. Spontaneous symmetry breaking induced unidirectional rotation of a chain-grafted colloidal particle in the active bath. Soft Matter 2017; 13: 8031–8038.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Scholz C, Engel M, Pöschel T. Rotating robots move collectively and self-organize. Nat Commun 2018; 9: 931.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Scholz C, Ldov A, Pöschel T, et al. Surfactants and rotelles in active chiral fluids. Sci Adv 2021; 7: eabf8998.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Arora P, Sood AK, Ganapathy R. Emergent stereoselective interactions and self-recognition in polar chiral active ellipsoids. Sci Adv 2021; 7: eabd0331.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang X, Ren C, Cheng K, et al. Robust boundary flow in chiral active fluid. Phys Rev E 2020; 101: 022603.[Article] [Google Scholar]
- Liu P, Zhu H, Zeng Y, et al. Oscillating collective motion of active rotors in confinement. Proc Natl Acad Sci USA 2020; 117: 11901–11907.[Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Yang Q, Zhu H, Liu P, et al. Topologically protected transport of cargo in a chiral active fluid aided by odd-viscosity-enhanced depletion interactions. Phys Rev Lett 2021; 126: 198001.[Article] [Google Scholar]
- Soni H, Kumar N, Nambisan J, et al. Phases and excitations of active rod-bead mixtures: Simulations and experiments. Soft Matter 2020; 16: 7210–7221.[Article] [Google Scholar]
- Giomi L, Hawley-Weld N, Mahadevan L. Swarming, swirling and stasis in sequestered bristle-bots. Proc R Soc A 2013; 469: 20120637.[Article] [CrossRef] [Google Scholar]
- Patterson GA, Fierens PI, Sangiuliano Jimka F, et al. Clogging transition of vibration-driven vehicles passing through constrictions. Phys Rev Lett 2017; 119: 248301.[Article] [Google Scholar]
- Barois T, Boudet JF, Lanchon N, et al. Characterization and control of a bottleneck-induced traffic-jam transition for self-propelled particles in a track. Phys Rev E 2019; 99: 052605.[Article] [Google Scholar]
- Garattoni L, Birattari M. Autonomous task sequencing in a robot swarm. Sci Robot 2018; 3: eaat0430.[Article] [Google Scholar]
- Brambilla M, Ferrante E, Birattari M, et al. Swarm robotics: A review from the swarm engineering perspective. Swarm Intell 2013; 7: 1–41.[Article] [Google Scholar]
- Dorigo M, Theraulaz G, Trianni V. Swarm robotics: Past, present, and future [point of view]. Proc IEEE 2021; 109: 1152–1165.[Article] [CrossRef] [Google Scholar]
- Francesca G, Birattari M. Automatic design of robot swarms: Achievements and challenges. Front Robot AI 2016; 3: 29.[Article] [CrossRef] [Google Scholar]
- Oh H, Ramezan Shirazi A, Sun C, et al. Bio-inspired self-organising multi-robot pattern formation: A review. Robot Auton Syst 2017; 91: 83–100.[Article] [CrossRef] [Google Scholar]
- Rubenstein M, Cornejo A, Nagpal R. Programmable self-assembly in a thousand-robot swarm. Science 2014; 345: 795–799.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Slavkov I, Carrillo-Zapata D, Carranza N, et al. Morphogenesis in robot swarms. Sci Robot 2018; 3: eaau9178.[Article] [Google Scholar]
- Li S, Batra R, Brown D, et al. Particle robotics based on statistical mechanics of loosely coupled components. Nature 2019; 567: 361–365.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Siebers F, Jayaram A, Blümler P, et al. Exploiting compositional disorder in collectives of light-driven circle walkers. Sci Adv 2023; 9: eadf5443.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang G, Phan TV, Li S, et al. Emergent field-driven robot swarm states. Phys Rev Lett 2021; 126: 108002.[Article] [Google Scholar]
- Wang G, Phan TV, Li S, et al. Robots as models of evolving systems. Proc Natl Acad Sci USA 2022; 119: e2120019119.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Wang G, Wang P, et al. Orderly hysteresis in field-driven robot swarm active matter. Chin Phys B 2023; 32: 068701.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Szwaykowska K, Schwartz IB, Mier-y-Teran Romero L, et al. Collective motion patterns of swarms with delay coupling: Theory and experiment. Phys Rev E 2016; 93: 032307.[Article] [Google Scholar]
- Vásárhelyi G, Virágh C, Somorjai G, et al. Optimized flocking of autonomous drones in confined environments. Sci Robot 2018; 3: eaat3536.[Article] [Google Scholar]
- Brandenbourger M, Locsin X, Lerner E, et al. Non-reciprocal robotic metamaterials. Nat Commun 2019; 10: 4608.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fruchart M, Hanai R, Littlewood PB, et al. Non-reciprocal phase transitions. Nature 2021; 592: 363–369.[Article] [CrossRef] [PubMed] [Google Scholar]
- Chvykov P, Berrueta TA, Vardhan A, et al. Low rattling: A predictive principle for self-organization in active collectives. Science 2021; 371: 90–95.[Article] [Google Scholar]
- Lauga E, Davis AMJ. Viscous Marangoni propulsion. J Fluid Mech 2012; 705: 120–133.[Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Ikeda K, Ei SI, Nagayama M, et al. Reduced model of a reaction-diffusion system for the collective motion of camphor boats. Phys Rev E 2019; 99: 062208.[Article] [Google Scholar]
- Crowdy D. Collective viscous propulsion of a two-dimensional flotilla of Marangoni boats. Phys Rev Fluids 2020; 5: 124004.[Article] [Google Scholar]
- Nakata S, Hayashima Y, Komoto H. Spontaneous switching of camphor motion between two chambers. Phys Chem Chem Phys 2000; 2: 2395–2399.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hayashima Y, Nagayama M, Nakata S. A camphor grain oscillates while breaking symmetry. J Phys Chem B 2001; 105: 5353–5357.[Article] [CrossRef] [Google Scholar]
- Sumino Y, Magome N, Hamada T, et al. Self-running droplet: Emergence of regular motion from nonequilibrium noise. Phys Rev Lett 2005; 94: 068301.[Article] [CrossRef] [PubMed] [Google Scholar]
- Roy T, Chaurasia SS, Cruz JM, et al. Modes of synchrony in self-propelled pentanol drops. Soft Matter 2022; 18: 1688–1695.[Article] [Google Scholar]
- Roy T, Chaurasia SS, Parmananda P. Phase-flip transition in volume-mismatched pairs of coupled 1-pentanol drops. Phys Rev E 2022; 106: 034614.[Article] [Google Scholar]
- Suematsu NJ, Ikura Y, Nagayama M, et al. Mode-Switching of the self-motion of a camphor boat depending on the diffusion distance of camphor molecules. J Phys Chem C 2010; 114: 9876–9882.[Article] [CrossRef] [Google Scholar]
- Fujita R, Takayama N, Matsuo M, et al. Height-dependent oscillatory motion of a plastic cup with a camphor disk floated on water. Phys Chem Chem Phys 2023; 25: 14546–14551.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gorce JB, Bliokh KY, Xia H, et al. Rolling spinners on the water surface. Sci Adv 2021; 7: eabd4632.[Article] [Google Scholar]
- Sharma J, Tiwari I, Das D, et al. Rotational synchronization of camphor ribbons. Phys Rev E 2019; 99: 012204.[Article] [Google Scholar]
- Jain R, Sharma J, Tiwari I, et al. In-phase and mixed-phase measure synchronization of camphor rotors. Phys Rev E 2023; 108: 024217.[Article] [Google Scholar]
- Sharma J, Tiwari I, Das D, et al. Chimeralike states in a minimal network of active camphor ribbons. Phys Rev E 2021; 103: 012214.[Article] [Google Scholar]
- Sharma J, Tiwari I, Das D, et al. Rotational synchronization of camphor ribbons in different geometries. Phys Rev E 2020; 101: 052202.[Article] [Google Scholar]
- Sharma J, Tiwari I, Parmananda P, et al. Aperiodic bursting dynamics of active rotors. Phys Rev E 2022; 105: 014216.[Article] [Google Scholar]
- Jain R, Sharma J, Tiwari I, et al. Generation of aperiodic motion due to sporadic collisions of camphor ribbons. Phys Rev E 2022; 106: 024201.[Article] [Google Scholar]
- Nakata S, Matsufuji T, Gorecki J, et al. Inversion probability of three-bladed self-propelled rotors after forced stops of different durations. Phys Chem Chem Phys 2020; 22: 13123–13128.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tiwari I, Parmananda P, Chelakkot R. Periodic oscillations in a string of camphor infused disks. Soft Matter 2020; 16: 10334–10344.[Article] [Google Scholar]
- Barotta JW, Thomson SJ, Alventosa LFL, et al. Bidirectional wave-propelled capillary spinners. Commun Phys 2023; 6: 87.[Article] [NASA ADS] [CrossRef] [Google Scholar]
- Soh S, Bishop KJM, Grzybowski BA. Dynamic self-assembly in ensembles of camphor boats. J Phys Chem B 2008; 112: 10848–10853.[Article] [CrossRef] [PubMed] [Google Scholar]
- Suematsu NJ, Nakata S, Awazu A, et al. Collective behavior of inanimate boats. Phys Rev E 2010; 81: 056210.[Article] [Google Scholar]
- Gorce JB, Xia H, Francois N, et al. Confinement of surface spinners in liquid metamaterials. Proc Natl Acad Sci USA 2019; 116: 25424–25429.[Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sáenz PJ, Pucci G, Turton SE, et al. Emergent order in hydrodynamic spin lattices. Nature 2021; 596: 58–62. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.