Open Access
Review
Issue |
Natl Sci Open
Volume 3, Number 5, 2024
|
|
---|---|---|
Article Number | 20230031 | |
Number of page(s) | 17 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20230031 | |
Published online | 15 March 2024 |
- Potts SG, Biesmeijer JC, Kremen C, et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol Evol 2010; 25: 345-353. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Menz MHM, Phillips RD, Winfree R, et al. Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends Plant Sci 2011; 16: 4-12. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Christmann S. Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas?. Restoration Ecol 2019; 27: 720-725. [Article] [CrossRef] [Google Scholar]
- van der Kooi CJ, Vallejo-Marín M, Leonhardt SD. Mutualisms and (A)symmetry in plant-pollinator interactions. Curr Biol 2021; 31: R91-R99. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rusch C, Broadhead GT, Raguso RA, et al. Olfaction in context — Sources of nuance in plant-pollinator communication. Curr Opin Insect Sci 2016; 15: 53-60. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Policha T, Davis A, Barnadas M, et al. Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three-dimensional printed flowers. New Phytol 2016; 210: 1058-1071. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hemingway CT, Muth F. Label-based expectations affect incentive contrast effects in bumblebees. Biol Lett 2022; 18: 20210549. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pires CSS, Maués MM. Insect pollinators, major threats and mitigation measures. Neotrop Entomol 2020; 49: 469-471. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Faheem M, Aslam M, Razaq M. Pollination ecology with special reference to insects a review. J Res Sci 2004; 4: 395–409 [Google Scholar]
- Asar Y, Ho SYW, Sauquet H. Early diversifications of angiosperms and their insect pollinators: Were they unlinked?. Trends Plant Sci 2022; 27: 858-869. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tong ZY, Wu LY, Feng HH, et al. New calculations indicate that 90% of flowering plant species are animal-pollinated. Natl Sci Rev 2023; 10: nwad219. [Article] [CrossRef] [PubMed] [Google Scholar]
- Peña-Kairath C, Delclòs X, Álvarez-Parra S, et al. Insect pollination in deep time. Trends Ecol Evol 2023; 38: 749-759. [Article] [CrossRef] [PubMed] [Google Scholar]
- Srinivasan MV. Pattern recognition in the honeybee: Recent progress. J Insect Physiol 1994; 40: 183-194. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kinoshita M, Stewart FJ, Ômura H. Multisensory integration in Lepidoptera: Insights into flower-visitor interactions. BioEssays 2017; 39: 1600086. [Article] [Google Scholar]
- Menzel R. The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 2012; 13: 758-768. [Article] [CrossRef] [PubMed] [Google Scholar]
- Vosshall LB. Into the mind of a fly. Nature 2007; 450: 193-197. [Article] [CrossRef] [PubMed] [Google Scholar]
- Riffell JA, Alarcón R, Abrell L, et al. Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proc Natl Acad Sci USA 2008; 105: 3404-3409. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Riffell JA. The neuroecology of a pollinator’s buffet: Olfactory preferences and learning in insect pollinators. Integrative Comp Biol 2011; 51: 781-793. [Article] [CrossRef] [PubMed] [Google Scholar]
- Smith BH. Merging mechanism and adaptation: An ethological approach to learning and generalization. In: Papaj DR, Lewis AC (eds). Insect Learning: Ecology and Evolutionary Perspectives. Berlin: Springer Science & Business Media, 1993, 126–157 [Google Scholar]
- Perry CJ, Barron AB, Cheng K. Invertebrate learning and cognition: Relating phenomena to neural substrate. WIRES Cogn Sci 2013; 4: 561-582. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schausberger P, Peneder S. Non-associative versus associative learning by foraging predatory mites. BMC Ecol 2017; 17: 2. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jones PL, Agrawal AA. Learning in insect pollinators and herbivores. Annu Rev Entomol 2017; 62: 53-71. [Article] [CrossRef] [PubMed] [Google Scholar]
- Knauer AC, Schiestl FP. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol Lett 2015; 18: 135-143. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Lichtenberg EM, Heiling JM, Bronstein JL, et al. Noisy communities and signal detection: Why do foragers visit rewardless flowers?. Phil Trans R Soc B 2020; 375: 20190486. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bell G. The evolution of empty flowers. J Theor Biol 1986; 118: 253-258. [Article] [CrossRef] [Google Scholar]
- Balamurali GS, Krishna S, Hema S. Senses and signals: Evolution of floral signals, pollinator sensory systems and the structure of plant-pollinator interactions. Curr Sci 2015; 108: 1852–1861 [Google Scholar]
- Johnson SD, Schiestl FP. Floral Mimicry. Oxford: Oxford University Press, 2016 [CrossRef] [Google Scholar]
- Raguso RA, Willis MA. Synergy between visual and olfactory cues in nectar feeding by naı̈ve hawkmoths, Manduca sext. Anim Behaviour 2002; 64: 685-695. [Article] [CrossRef] [Google Scholar]
- Smid HM, Vet LE. The complexity of learning, memory and neural processes in an evolutionary ecological context. Curr Opin Insect Sci 2016; 15: 61-69. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2021; 383: 149-164. [Article] [CrossRef] [PubMed] [Google Scholar]
- Goyret J. Look and touch: Multimodal sensory control of flower inspection movements in the nocturnal hawkmoth Manduca sexta. J Exp Biol 2010; 213: 3676-3682. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schiestl FP, Johnson SD. Pollinator-mediated evolution of floral signals. Trends Ecol Evol 2013; 28: 307-315. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Riffell JA, Alarcon R. Multimodal floral signals and moth foraging decisions. PLoS One 2013; 8: e72809 [CrossRef] [PubMed] [Google Scholar]
- Qiu Q, Wu Y, Ma L, et al. Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period. eLife 2021; 10: e60546. [Article] [CrossRef] [PubMed] [Google Scholar]
- Barron AB, Hebets EA, Cleland TA, et al. Embracing multiple definitions of learning. Trends Neuroscis 2015; 38: 405-407. [Article] [CrossRef] [Google Scholar]
- Wright CS, Joshi K, Iyer-Biswas S. Cellular learning: Habituation sans neurons in a unicellular organism. Curr Biol 2023; 33: R61-R63. [Article] [CrossRef] [PubMed] [Google Scholar]
- Byrne JH, Hawkins RD. Nonassociative learning in invertebrates. Cold Spring Harb Perspect Biol 2015; 7: a021675. [Article] [CrossRef] [PubMed] [Google Scholar]
- Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6: 229. [Article] [CrossRef] [PubMed] [Google Scholar]
- Riffell JA, Lei H, Abrell L, et al. Neural basis of a pollinator’s buffet: Olfactory specialization and learning in Manduca sexta. Science 2013; 339: 200-204. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gumbert A. Color choices by bumble bees (Bombus terrestris): Innate preferences and generalization after learning. Behaval Ecol SocioBiol 2000; 48: 36-43. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Raguso RA. Wake up and smell the roses: The ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 2008; 39: 549-569. [Article] [CrossRef] [Google Scholar]
- Dukas R. Evolutionary biology of insect learning. Annu Rev Entomol 2008; 53: 145-160. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schiestl FP, Schlüter PM. Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu Rev Entomol 2009; 54: 425-446. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cholé H, Junca P, Sandoz JC. Appetitive but not aversive olfactory conditioning modifies antennal movements in honeybees. Learn Mem 2015; 22: 604-616. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kandori I, Yamaki T. Reward and non-reward learning of flower colours in the butterfly Byasa alcinous (Lepidoptera: Papilionidae). Naturwissenschaften 2012; 99: 705-713. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gaskett AC. Orchid pollination by sexual deception: Pollinator perspectives. Biol Rev 2011; 86: 33-75. [Article] [CrossRef] [Google Scholar]
- Aguiar JMRBV, Giurfa M, Sazima M. A cognitive analysis of deceptive pollination: Associative mechanisms underlying pollinators’ choices in non-rewarding colour polymorphic scenarios. Sci Rep 2020; 10: 9476. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Little CM, Chapman TW, Hillier NK. Considerations for insect learning in integrated pest management. J Insect Sci 2019; 19: 6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Haverkamp A, Smid HM. A neuronal arms race: The role of learning in parasitoid-host interactions. Curr Opin Insect Sci 2020; 42: 47-54. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Twick I, Lee JA, Ramaswami M. Olfactory habituation in drosophila-odor encoding and its plasticity in the antennal lobe. In: Barkai E, Wilson DA (eds). Odor Memory and Perception. Amsterdam: Elsevier Science, 2014, 3–38 [CrossRef] [Google Scholar]
- Baglan H, Lazzari C, Guerrieri F. Learning in mosquito larvae (Aedes aegypti): Habituation to a visual danger signal. J Insect Physiol 2017; 98: 160-166. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shen Y, Dasgupta S, Navlakha S. Habituation as a neural algorithm for online odor discrimination. Proc Natl Acad Sci USA 2020; 117: 12402-12410. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Hostachy C, Couzi P, Portemer G, et al. Exposure to conspecific and heterospecific sex-pheromones modulates gustatory habituation in the moth Agrotis ipsilon. Front Physiol 2019; 10: 1518. [Article] [CrossRef] [PubMed] [Google Scholar]
- Simonds V, Plowright CMS. How do bumblebees first find flowers? Unlearned approach responses and habituation. Anim Behaviour 2004; 67: 379-386. [Article] [CrossRef] [Google Scholar]
- Raza MF. Comparison of learning and memory of eastern (apis cerana cerana) and western honey bees (apis mellifera l.). Appl Ecol Env Res 2019; 17: 4971-4984. [Article] [Google Scholar]
- Guez D, Suchail S, Gauthier M, et al. Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 2001; 76: 183-191. [Article] [CrossRef] [PubMed] [Google Scholar]
- Abram PK, Cusumano A, Abram K, et al. Testing the habituation assumption underlying models of parasitoid foraging behavior. PeerJ 2017; 5: e3097. [Article] [CrossRef] [PubMed] [Google Scholar]
- Felsenberg J, Barnstedt O, Cognigni P, et al. Re-evaluation of learned information in Drosophila. Nature 2017; 544: 240-244. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Takeda K. Classical conditioned response in the honey bee. J Insect Physiol 1961; 6: 168-179. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chittka L, Thomson JD, Waser NM. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 1999; 86: 361-377. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Vergoz V, Roussel E, Sandoz JC, et al. Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS ONE 2007; 2: e288. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Dacks AM, Riffell JA, Martin JP, et al. Olfactory modulation by dopamine in the context of aversive learning. J NeuroPhysiol 2012; 108: 539-550. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li Q, Liberles SD. Aversion and attraction through olfaction. Curr Biol 2015; 25: R120-R129. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Armbruster WS. Plant ecology: New insights into the adaptive significance of rapid floral movements. Curr Biol 2023; 33: R36-R39. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rosas JM, Todd TP, Bouton ME. Context change and associative learning. WIRES Cogn Sci 2013; 4: 237-244. [Article] [Google Scholar]
- Brembs B. Operant conditioning in invertebrates. Curr Opin Neurobiol 2003; 13: 710-717. [Article] [CrossRef] [PubMed] [Google Scholar]
- Papaj DR, Lewis AC. Insect Learning: Ecology and Evolutinary Perspectives. Berlin: Springer Science & Business Media, 1997 [Google Scholar]
- Abramson CI, Dinges CW, Wells H. Operant conditioning in honey bees (apis mellifera l.): The cap pushing response. PLoS ONE 2016; 11: e0162347. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sokolowski MBC, Abramson CI. From foraging to operant conditioning: A new computer-controlled Skinner box to study free-flying nectar gathering behavior in bees. J Neurosci Methods 2010; 188: 235-242. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wyers EJ, Peeke HV, Herz M. Behavioral habituation in invertebrates. In: Peeke HV, Herz M (eds). Habituation: Behavioral Studies. Amsterdam: Elsevier Science, 1973, 1–57 [Google Scholar]
- Thompson RF. Habituation: A history. Neurobiol Learn Mem 2009; 92: 127-134. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rankin CH, Abrams T, Barry RJ, et al. Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 2009; 92: 135-138. [Article] [CrossRef] [PubMed] [Google Scholar]
- Asztalos Z, Arora N, Tully T. Olfactory jump reflex habituation in Drosophila and effects of classical conditioning mutations. J Neurogenet 2007; 21: 1–18 [CrossRef] [PubMed] [Google Scholar]
- Bernal-Gamboa R, García-Salazar J, Gámez AM. Analysis of habituation learning in mealworm pupae (Tenebrio molitor). Front Psychol 2021; 12: 745866. [Article] [CrossRef] [PubMed] [Google Scholar]
- Semelidou O, Acevedo S, Skoulakis E. Accessing olfactory habituation in Drosophila melanogaster with a T-maze paradigm. Bio-Protocol 2019; 9: e3259. [Article] [Google Scholar]
- Glendinning JI, Davis A, Ramaswamy S. Contribution of different taste cells and signaling pathways to the discrimination of “bitter” taste stimuli by an insect. J Neurosci 2002; 22: 7281-7287. [Article] [CrossRef] [PubMed] [Google Scholar]
- Das S, Sadanandappa MK, Dervan A, et al. Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci USA 2011; 108: E646-E654. [Article] [Google Scholar]
- Devaud JM, Papouin T, Carcaud J, et al. Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations. Proc Natl Acad Sci USA 2015; 112: E5854-5862. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jones KN, Reithel JS, Irwin RE. A trade-off between the frequency and duration of bumblebee visits to flowers. Oecologia 1998; 117: 161-168. [Article] [CrossRef] [PubMed] [Google Scholar]
- Whitehead MR, Peakall R. Short-term but not long-term patch avoidance in an orchid-pollinating solitary wasp. Behaval Ecol 2013; 24: 162-168. [Article] [Google Scholar]
- Picimbon JF. Olfactory Concepts of Insect Control-Alternative to Insecticides. Basel: Springer Nature Switzerland AG, 2019 [Google Scholar]
- Deisig N, Giurfa M, Lachnit H, et al. Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur J Neurosci 2006; 24: 1161-1174. [Article] [CrossRef] [PubMed] [Google Scholar]
- Traina G. Learning processes in elementary nervous systems. J Integrative Neurosci 2020; 19: 673-678. [Article] [CrossRef] [Google Scholar]
- McDiarmid TA, Yu AJ, Rankin CH. Habituation is more than learning to ignore: Multiple mechanisms serve to facilitate shifts in behavioral strategy. BioEssays 2019; 41: e1900077. [Article] [CrossRef] [PubMed] [Google Scholar]
- Engel JE, Wu CF. Neurogenetic approaches to habituation and dishabituation in Drosophila. Neurobiol Learn Mem 2009; 92: 166-175. [Article] [CrossRef] [PubMed] [Google Scholar]
- Semelidou O, Acevedo SF, Skoulakis EM. Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in Drosophila. eLife 2018; 7: e39569. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zimmer RK, Derby CD. Neuroecology and the need for broader synthesis. Integrative Comp Biol 2011; 51: 751-755. [Article] [CrossRef] [PubMed] [Google Scholar]
- Duerr JS, Quinn WG. Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci USA 1982; 79: 3646-3650. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cho W, Heberlein U, Wolf FW. Habituation of an odorant-induced startle response in Drosophila. Genes Brain Behav 2004; 3: 127-137. [Article] [CrossRef] [PubMed] [Google Scholar]
- Garcia JE, Hung YS, Greentree AD, et al. Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. Proc Natl Acad Sci USA 2017; 114: 7713-7718. [Article] [CrossRef] [PubMed] [Google Scholar]
- Janovský Z, Smyčka J, Smyčková M, et al. Pollinator preferences and flower constancy: Is it adaptive for plants to manipulate them?. Biol J Linnean Soc 2017; 121: 475-483. [Article] [CrossRef] [Google Scholar]
- Pasquet RS, Peltier A, Hufford MB, et al. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc Natl Acad Sci USA 2008; 105: 13456-13461. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Klinkhamer PGL, de Jong TJ. Attractiveness to pollinators: A plant’s dilemma. Oikos 1993; 66: 180. [Article] [CrossRef] [Google Scholar]
- Ghazoul J. Pollen and seed dispersal among dispersed plants. Biol Rev 2005; 80: 413-443. [Article] [CrossRef] [PubMed] [Google Scholar]
- Renner SS. Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In: Ollerton J, Waser NM (eds). Plant-pollinator Interactions: From Specialization to Generalization. Chicago: University of Chicago Press, 2006 123–144 [Google Scholar]
- Jersáková J, Johnson SD, Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 2006; 81: 219-235. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ren Z, Wang H, Luo Y. Deceptive pollination of orchids. Biodiversity Sci 2013; 20: 270-279. [Article] [Google Scholar]
- Thakar JD, Kunte K, Chauhan AK, et al. Nectarless flowers: Ecological correlates and evolutionary stability. Oecologia 2003; 136: 565-570. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ayasse M, Schiestl FP, Paulus HF, et al. Evolution of reproductive strategies in the sexually deceptive orchid ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success?. Evolution 2000; 54: 1995-2006. [Article] [Google Scholar]
- Dafni A. Mimicry and deception in pollination. Annu Rev Ecol Syst 1984; 15: 259-278. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kelber A. Colour learning in the hawkmoth Macroglossum Stellatarum. J Exp Biol 1996; 199: 1127-1131. [Article] [CrossRef] [PubMed] [Google Scholar]
- Internicola AI, Harder LD. Bumble-bee learning selects for both early and long flowering in food-deceptive plants. Proc R Soc B 2012; 279: 1538-1543. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jersáková J, Johnson SD. Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia 2006; 147: 60-68. [Article] [CrossRef] [PubMed] [Google Scholar]
- Stockton DG, Cha DH, Loeb GM. Does habituation affect the efficacy of semiochemical oviposition repellents developed against Drosophila suzukii? Environ Entomol 2021; 50: 1322–1331 [CrossRef] [PubMed] [Google Scholar]
- Johnson SD, Peter CI, Nilsson LA, et al. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 2003; 84: 2919-2927. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Whitehead MR, Linde CC, Peakall R. Pollination by sexual deception promotes outcrossing and mate diversity in self-compatible clonal orchids. J Evolary Biol 2015; 28: 1526-1541. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sabat AM, Ackerman JD. Fruit set in a deceptive orchid: The effect of flowering phenology, display size, and local floral abundance. Am J Bot 1996; 83: 1181-1186. [Article] [CrossRef] [Google Scholar]
- Orbán LL, Plowright CMS. Getting to the start line: How bumblebees and honeybees are visually guided towards their first floral contact. Insect Soc 2014; 61: 325-336. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wei N, Kaczorowski RL, Arceo-Gómez G, et al. Pollinators contribute to the maintenance of flowering plant diversity. Nature 2021; 597: 688-692. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ramos SE, Schiestl FP. Rapid plant evolution driven by the interaction of pollination and herbivory. Science 2019; 364: 193-196. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Moreira-Hernández JI, Muchhala N. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annu Rev Ecol Evol Syst 2019; 50: 191-217. [Article] [CrossRef] [Google Scholar]
- Ding GL, Zhang WF, Lu BY, et al. The significance of artificial introduction of pollinators for improving the yield of Camellia oleifera and the potential biosafety issues. Acta Ecologica Sin 2023, 1–9 [Google Scholar]
- Gemeda TK, Li J, Luo S, et al. Pollen trapping and sugar syrup feeding of honey bee (Hymenoptera: Apidae) enhance pollen collection of less preferred flowers. PLoS ONE 2018; 13: e0203648. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Aizen MA, Aguiar S, Biesmeijer JC, et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob Change Biol 2019; 25: 3516-3527. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Giurfa M. Pollinator cognition: Framing bee memories in an ecological context. Curr Biol 2022; 32: R1015-R1018. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.