Open Access
Review
Issue
Natl Sci Open
Volume 3, Number 6, 2024
Article Number 20230089
Number of page(s) 31
Section Engineering
DOI https://doi.org/10.1360/nso/20230089
Published online 26 April 2024
  • Tian Z, Jiang B, Malik A, et al. Axial helium compressor for high-temperature gas-cooled reactor: A review. Ann Nucl Energy 2019; 130: 54-68. [Article] [CrossRef] [Google Scholar]
  • Demuth SF. SP100 space reactor design. Prog Nucl Energy 2003; 42: 323-359. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Johnsen RL, Namkoong D, Edkin RA. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas. Technical Report, NASA-TM-X-67990, Ohio: Lewis Research Center, 1971 [Google Scholar]
  • Chen W, Liang T, Jiang C, et al. Advances in the study of He-Xe Brayton cycle in space reactors (in Chinese). J Xi’an Jiaotong Univ 2023; 57: 46-57 [Google Scholar]
  • Ashcroft J, Eshelman C. Summary of NR program prometheus efforts. Technical Report, Niskayuna: Knolls Atomic Power Lab (KAPL). 2006 [Google Scholar]
  • King JC, El-Genk MS. Thermal-hydraulic and neutronic analyses of the submersion-subcritical, safe space (S4) reactor. Nucl Eng Des 2009; 239: 2809-2819. [Article] [CrossRef] [Google Scholar]
  • King JC, El-Genk MS. Submersion-subcritical safe space (S4) reactor. Nucl Eng Des 2006; 236: 1759-1777. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Su Z, Yang J, Ke G. Space Nuclear Power (in Chinese). Shanghai: Shanghai Jiao Tong University Press, 2016 [Google Scholar]
  • Taylor MF, Bauer KE, McEligot DM. Internal forced convection to low-Prandtl-number gas mixtures. Int J Heat Mass Transfer 1988; 31: 13-25. [Article] [CrossRef] [Google Scholar]
  • Qin H, Wang C, Tian W, et al. Experimental investigation on flow and heat transfer characteristics of He-Xe gas mixture. Int J Heat Mass Transfer 2022; 192: 122942. [Article] [CrossRef] [Google Scholar]
  • Wu Z, Wu Y, Wang C, et al. Experimental and numerical study on helium flow characteristics in randomly packed pebble bed. Ann Nucl Energy 2019; 128: 268-277. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yang X, Shi L. The characteristics study of helium-xenon mixture in closed Brayton cycle for space nuclear reactor power. In: Proceedings of the 2018 26th International Conference on Nuclear Engineering. London, 2018 [Google Scholar]
  • Yang X, Shi L. Analysis of helium-xenon mixture property influence on Brayton cycle (in Chinese). Atomic Energy Sci Technol 2018; 52: 1407-1414 [Google Scholar]
  • Li Z. Research on the Dynamic Energy Conversion System for Space Nuclear Reactor (in Chinese). Dissertation for Doctoral Degree. Beijing: Tsinghua University, 2017 [Google Scholar]
  • Filippone C, Jordan K. The Holos Reactor: A Distributable Power Generator with Transportable Subcritical Power Modules. engrXiv, 2017[Article] [Google Scholar]
  • Claudio F. Holos Generators: Distributable, Integral very-Small Modular Reactors (v-SMRs) Competitive and Synergetic with Renewable Energy Sources. In: International SMR and Advanced Reactor Summit. Atlanta, 2018 [Google Scholar]
  • Testoni R, Bersano A, Segantin S. Review of nuclear microreactors: Status, potentialities and challenges. Prog Nucl Energy 2021; 138: 103822. [Article] [CrossRef] [Google Scholar]
  • Status Report–MoveluX (Toshiba Energy Systems & Solutions) Japan. 2019, https://aris.iaea.org/PDF/MoveluX_2020.pdf [Google Scholar]
  • Iregui O, Isabel M. Design and analysis of a solar-nuclear hybrid helium Brayton power cycle in Nazareth, La Guajira, Colombia. Dissertation for Doctoral Degree. Bogot´a: Universidad de los Andes, 2023 [Google Scholar]
  • Levine B. Space nuclear power plant pre-conceptual design report, for information. Niskayuna: Knolls Atomic Power Lab (KAPL), 2006 [CrossRef] [Google Scholar]
  • Guimarães LNF, Camillo GP, Placco GM, et al. Power conversion for a microreactor: A nuclear space application. In: INAC 2009: International nuclear Atlantic Conference. Rio de Janeiro, 2009 [Google Scholar]
  • Juhasz A. Multi megawatt gas turbine power systems for lunar colonies. In: Proceedings of the4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, 2006 [Google Scholar]
  • Juhasz A. A mass computation model for light weight Brayton cycle regenerator heat exchangers. In: Proceedings of the 8th Annual International Energy Conversion Engineering Conference. Nashville, 2010 [Google Scholar]
  • Zhang W, Liu X, Tian W, et al. Conceptual design of megawatt class space heat pipe reactor power system (in Chinese). Atom Energy Sci Techno 2017; 51 2160-2164 [Google Scholar]
  • Zhang W, Zhang D, Wang C, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system. Ann Nucl Energy 2020; 144: 107576. [Article] [CrossRef] [Google Scholar]
  • El-Genk MS. Space nuclear reactor power system concepts with static and dynamic energy conversion. Energy Convers Manage 2008; 49: 402-411. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ma W, Ye P, Zhao G, et al. Effect of cooling schemes on performance of MW-class space nuclear closed Brayton cycle. Ann Nucl Energy 2021; 162: 108485. [Article] [CrossRef] [Google Scholar]
  • Huang C. Modeling and optimization analysis of helium turbine cycle (in Chinese). J Ther Sci Technol 2022; 21: 356-363 [Google Scholar]
  • Bae SJ, Lee J, Ahn Y, et al. Preliminary studies of compact Brayton cycle performance for small modular high temperature gas-cooled reactor system. Ann Nucl Energy 2015; 75: 11-19. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wright S, Vernon M, Pickard P. Concept design for a high temperature helium Brayton cycle with interstage heating and cooling. 2013, https://www.osti.gov/biblio/1323907/ [Google Scholar]
  • Postlethwait M, DiLorenzo P, Belanger S, et al. Comparison of direct and indirect gas reactor Brayton systems for nuclear electric space propulsion. In: Proceedings of the Space Nuclear Conference. San Diego, 2005 [Google Scholar]
  • Xue B. Design and Optimization of Key Parameters for Small Helium Xenon Cooled Reactor (in Chinese). Dissertation for Master’s Degree. Shanghai: Shanghai Jiao Tong University, 2020 [Google Scholar]
  • El-Genk M, Tournier JM. Selection of noble gas binary mixtures for Brayton space nuclear power systems. In: Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, 2006 [Google Scholar]
  • Tournier JM, El-Genk MS, Gallo B. Best estimates of binary gas mixtures properties for closed Brayton cycle space applications. In: Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, 2006 [Google Scholar]
  • You E, Shi L, Zhang Z. Thermodynamics properties of binary gas mixtures for Brayton space nuclear power system. In: Proceedings of the HTR 2014. Weihai, 2014 [Google Scholar]
  • Invernizzi CM, Di Marcoberardino G. An overview of real gas Brayton power cycles: Working fluids selection and thermodynamic implications. Energies 2023; 16: 3989. [Article] [CrossRef] [Google Scholar]
  • Li Z, Yang X, Jie W, et al. Thermodynamic optimization and analysis of Brayton-cycle system for space power reactor (in Chinese). Atom Energy Sci Technol 2017; 51: 1173-1180 [Google Scholar]
  • Li Z, Yang X, Wang J, et al. Thermodynamic analysis of a Brayton cycle system for a space power reactor (in Chinese). J Tsinghua Univ (Sci & Technol) 2017; 57: 537-549 [Google Scholar]
  • Liu H, Chi Z, Zang S. Optimization of a closed Brayton cycle for space power systems. Appl Therm Eng 2020; 179: 115611. [Article] [CrossRef] [Google Scholar]
  • Ribeiro GB, Braz Filho FA, Guimarães LNF. Thermodynamic analysis and optimization of a closed regenerative Brayton cycle for nuclear space power systems. Appl Therm Eng 2015; 90: 250-257. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Biondi A, Toro C. Closed Brayton cycles for power generation in space: Modeling, simulation and exergy analysis. Energy 2019; 181: 793-802. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Koster A, Matzner HD, Nicholsi DR. PBMR design for the future. Nucl Eng Des 2003; 222: 231-245. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Dardour S, Nisan S, Charbit F. Utilisation of waste heat from GT-MHR and PBMR reactors for nuclear desalination. Desalination 2007; 205: 254-268. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sato H, Yan XL, Tachibana Y, et al. GTHTR300—A nuclear power plant design with 50% generating efficiency. Nucl Eng Des 2014; 275: 190-196. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yan X, Kunitomi K, Nakata T, et al. GTHTR300 design and development. Nucl Eng Des 2003; 222: 247-262. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Muto Y, Ishiyama S, Fukuyama Y, et al. Design study of helium turbine for the 300 MW HTGR-GT power plant. In: Proceedings of theASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich, 2000 [Google Scholar]
  • Ahn Y, Lee JI. Study of various Brayton cycle designs for small modular sodium-cooled fast reactor. Nucl Eng Des 2014; 276: 128-141. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yan XL, Lidsky LM. Design of closed-cycle helium turbine nuclear power plants. In: Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. Cincinnati, 1993 [Google Scholar]
  • Chen Y, Zou Z, Fu C. A study on the similarity method for helium compressors. Aerosp Sci Tech 2019; 90: 115-126. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Malik A, Zheng Q, Qureshi SR, et al. Effect of helium xenon as working fluid on centrifugal compressor of power conversion unit of closed Brayton cycle power plant. Int J Hydrogen Energy 2021; 46: 7546-7557. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gallo BM, El-Genk MS. Brayton rotating units for space reactor power systems. Energy Convers Manage 2009; 50: 2210-2232. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • El-Genk MS, Tournier JM. Noble gas binary mixtures for gas-cooled reactor power plants. Nucl Eng Des 2008; 238: 1353-1372. [Article] [CrossRef] [Google Scholar]
  • El-Genk MS, Tournier JMP. Small size turbo-machines for HTR plants. In: Proceedings of theASME 2009 Power Conference. Albuquerque, 2009 [Google Scholar]
  • Yuan Z, Zheng Q, Yue G, et al. Performance evaluation on radial turbines with potential working fluids for space closed Brayton cycle. Energy Convers Manage 2021; 243: 114368. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yuan Z, Zheng Q, Wang L, et al. Influence of structural factors on the performance of He-Xe mixture gas volute. J Mech Eng 2021; 57: 192 [Google Scholar]
  • Liu X. Investigation on Aerodynamic Design and Flow Characteristics of Centrifugal Compressor Using Helium and Xenon (in Chinese). Dissertation for Master’s Degree. Harbin: Harbin Engineering University, 2019 [Google Scholar]
  • Tian Z. Research on the Performance and Design Method of Helium Compressor (in Chinese). Dissertation for Doctoral Degree. Harbin: Harbin Engineering University, 2021 [Google Scholar]
  • Tian Z, Zheng Q, Jiang B. Design and analysis of helium and xenon binary mixture gas centrifugal compressor (in Chinese). Chin J Turbomach 2018; 60: 14-19 [Google Scholar]
  • Xu S, Luo L, Du W, et al. Aerodynamic design and analysis of 618 kW radial turbine with helium-xenon mixture gas (in Chinese). Energy Conserv Technol 2021; 39: 138-143 [Google Scholar]
  • Xu S, Luo L, Du W, et al. Research on flow field and aerodynamic characteristics of 618 kW radial turbine with helium-xenon mixture gas (in Chinese). Turbine Technol 2020; 62: 351-373 [Google Scholar]
  • Zhang S. Optimal Design of Helium Xenon Centrifugal Compressor and Experimental System Simulation Research (in Chinese). Dissertation for Master’s Degree. Harbin: Harbin Engineering University, 2022 [Google Scholar]
  • Zhang S, Jiang Y, Lin H, et al. Effects of splitter blade length and circumferential position on performance of helium-xenon centrifugal compressor (in Chinese). J Eng Therm Energy Power 2022; 37: 49-64 [Google Scholar]
  • Nuclear Propulsion! China’s high power space closed Brayton cycle energy conversion system made great breakthrough (in Chinese). 2023, https://baijiahao.baidu.com/s?id=1759994446925078592&wfr=spider&for=pc [Google Scholar]
  • Chai L, Tassou SA. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm Sci Eng Prog 2020; 18: 100543. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Song Y, Zhou T, Jiang J, et al. Progress and prospects on lithium cooled space nuclear reactor power (in Chinese). China Basic Sci 2021; 23: 21-50 [Google Scholar]
  • Ma W, Yang X, Wang J. Heat transfer-resistance coupling characteristics of recuperator in closed Brayton cycles for space reactors (in Chinese). J Tsinghua Univ (Sci & Technol) 2022; 62: 1660-667 [Google Scholar]
  • Kim IH, No HC, Lee JI, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations. Nucl Eng Des 2009; 239: 2399-2408. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kim IH, No HC. Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations. Appl Therm Eng 2011; 31: 4064-4073. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mylavarapu SK, Sun X, Glosup RE, et al. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility. Appl Therm Eng 2014; 65: 605-614. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Geschke M. Evaluating Power Conversion Cycles for Nuclear Microreactors. Dissertation for Bachelor’s Degree. Cambridge: Massachusetts Institute of Technology, 2023 [Google Scholar]
  • Yin H, Ma Y, Jia G, et al. Design analysis of a helium xenon-printed circuit heat exchanger for a closed Brayton cycle microtransport reactor. Int J Energy Res 2023; 2023: 1-19 [CrossRef] [Google Scholar]
  • Yang Y, Huo H. Analysis of heat transfer and flow characteristic for high temperature helium-xenon gas microchannel regenerator (in Chinese). Atom Energy Sci Technol 2018; 52: 2156-2163 [Google Scholar]
  • Shi X, Wang L, Chen W, et al. Effect of induced vortex and configuration layout on heat transfer enhancement of helium-xenon mixture. Appl Therm Eng 2023; 225: 120168. [Article] [CrossRef] [Google Scholar]
  • El-Genk MS. High temperature water heat pipes radiator for a brayton space reactor power system. In: SPACE TECH.& APPLIC.INT.FORUM-STAIF 2006: 10th Conf Thermophys Applic Microgravity; 23rd Symp Space Nucl Pwr & Propulsion; 4th Conf Human/Robotic Tech & Nat’l Vision for Space Explor.; 4th Symp Space Coloniz.; 3rd Symp on New Frontiers & Future Concepts. Albuquerque, 2006 [Google Scholar]
  • Romano LFR, Ribeiro GB. Cold-side temperature optimization of a recuperated closed Brayton cycle for space power generation. Therm Sci Eng Prog 2020; 17: 100498. [Article] [CrossRef] [Google Scholar]
  • Romano LFR, Ribeiro GB. Optimization of a heat pipe-radiator assembly coupled to a recuperated closed Brayton cycle for compact space power plants. Appl Therm Eng 2021; 196: 117355. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Pfeiffer S, White A. Conceptual design of a liquid droplet radiator space flight experiment. Technical Report, Bethpage 1989. 891565 [Google Scholar]
  • Mattick AT, Hertzberg A. Liquid droplet radiators for heat rejection in space. J Energy 1981; 5: 387-393. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ma Y. Numerical Study on Radiative and Evaporative Characteristics of Liquid Droplet Radiator (in Chinese). Dissertation for Doctoral Degree. Hefei: University of Science and Technology of China, 2010 [Google Scholar]
  • Zeng C. Modeling Development of Radiation Heat Transfer of Liquid Droplet Radiators (in Chinese). Dissertation for Master’s Degree. Harbin: Harbin Engineering University, 2019 [Google Scholar]
  • Qin H, Wang C, Tian W, et al. Energy allocation optimization of the gas-cooled space nuclear reactor. Appl Therm Eng 2021; 196: 117289. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Huang X, Feng Y. Application of multigrid method in dynamic simulation of HTR-10 core (in Chinese). J Tsinghua Univ (Sci & Technol) 1998; 38: 108-111 [Google Scholar]
  • Huang X, Feng Y. Dynamic engineering model of the HTR-10 reactor core (in Chinese). J Tsinghua Univ (Sci & Technol) 2002; 42: 32-35 [Google Scholar]
  • Ma Y, Li D, Tian Z. Research on transient operation characteristics of helium gas turbine by simulation (in Chinese). Nuclear Power Eng 2011; 32: 81-85 [Google Scholar]
  • Chi X. Optimization Design and Operation Characteristic Analysis of He-Xe Brayton Power System for Space Lithium-Cooled Reactor (in Chinese). Dissertation for Doctoral Degree. Hefei: University of Science and Technology of China, 2022 [Google Scholar]
  • Qiu L, Liao S, Fan S, et al. Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium Brayton cycle. Energy 2023; 278: 128030. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Guillen D, Wendt D. Integration of a microturbine power conversion unit in MAGNET. 2020, https://doi.org/10.2172/1736010 [Google Scholar]
  • Xie H, Wang J. Dynamic model of helium turbine cycle system (in Chinese). Nuclear Power Eng 2011; 32: 16-19 [Google Scholar]
  • Li X, Yang X, Zhang Y, et al. HTR-10GT dual bypass valve control features and decoupling strategy for power regulation. Sci Tech Nucl Installations 2017; 2017: 1-12. [Article] [Google Scholar]
  • Ma W, Ye P, Qiu X, et al. Features of transient power regulation by a bypass valve control for a Brayton space nuclear power system (in Chinese). J Tsinghua Univ (Sci & Technol) 2023; 63: 1282-1290 [Google Scholar]
  • Hao H, Yang X, Wang J. Influence of bypass valve regulation on transient characteristics fo closed Brayton cycle coupled with HTR (in Chinese). Atom Energy Sci Technol 2016; 50: 612-620 [Google Scholar]
  • Gad-Briggs A, Pilidis P, Nikolaidis T. Analyses of the control system strategies and methodology for part power control of the simple and intercooled recuperated Brayton helium gas turbine cycles for generation IV nuclear power plants. J Nucl Eng Radiat Sci 2017; 3: 041016. [Article] [CrossRef] [Google Scholar]
  • Botha BW, Rousseau PG. Control options for load rejection in a three-shaft closed cycle gas turbine power plant. J Eng Gas Turbines Power 2007; 129: 806-813. [Article] [CrossRef] [Google Scholar]
  • Wang X, Zhao F, He Y, et al. Development and verification of helium-xenon mixture cooled small reaction system. Prog Nucl Energy 2023; 160: 104679. [Article] [CrossRef] [Google Scholar]
  • Ming Y, Yi J, Fang H, et al. Analysis of operating characteristic of direct Brayton cycle gas-cooled reactor system (in Chinese). Atom Energy Sci Technol 2020; 54: 1168-1175 [Google Scholar]
  • Hou J. Investigation on the Operation Characteristics of 100 kWe Brayton Cycle System Coupled With Lithium Cooled Space Fast Reactor (in Chinese). Dissertation for Master’s Degree. Shanghai: Shanghai Jiao Tong University, 2020 [Google Scholar]
  • El-Genk MS, Tournier JMP, Gallo BM. Dynamic simulation of a space reactor system with closed Brayton cycle loops. J Propuls Power 2010; 26: 394-406. [Article] [CrossRef] [Google Scholar]
  • Wang X, Dong X, Li Z, et al. Transient characteristics analysis of residual heat removal system for helium-xenon mixture cooled small reactor system. Nucl Eng Des 2023; 410: 112387. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang R, Guo K, Wang C, et al. Thermal-hydraulic analysis of gas-cooled space nuclear reactor power system with closed Brayton cycle. Int J Energy Res 2021; 45: 11851-11867. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang C, Zhang R, Guo K, et al. Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle. Front Energy 2021; 15: 916-929. [Article] [Google Scholar]
  • Qin H, Zhang R, Guo K, et al. Thermal-hydraulic analysis of an open-grid megawatt gas-cooled space nuclear reactor core. Int J Energy Res 2021; 45: 11616-11628. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou J, Wu J, Cui Y, et al. Research on initiating events analysis of small helium-xenon gas cooled nuclear reactor. Energies 2023; 16: 6769. [Article] [CrossRef] [Google Scholar]
  • Wu J, Zhou J, Zou C, et al. Accident occurrence frequency of a small helium-xenon gas cooled nuclear reactor system (in Chinese). Nuclear Tech 2022; 45: 103-112 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.