Issue
Natl Sci Open
Volume 3, Number 6, 2024
Special Topic: Key Materials for Carbon Neutrality
Article Number 20240037
Number of page(s) 26
Section Materials Science
DOI https://doi.org/10.1360/nso/20240037
Published online 09 October 2024
  • Zhu Z, Jiang T, Ali M, et al. Rechargeable batteries for grid scale energy storage. Chem Rev 2022; 122: 16610-16751. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ye Z, Jiang Y, Li L, et al. Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett 2021; 13: 203. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Bhushan N, Mekhilef S, Tey KS, et al. Overview of model- and non-model-based online battery management systems for electric vehicle applications: A comprehensive review of experimental and simulation studies. Sustainability 2022; 14: 15912. [Article] [CrossRef] [Google Scholar]
  • Zhang Y, Lv C, Zhu Y, et al. Challenges and strategies of aluminum anodes for high-performance aluminum-air batteries. Small Methods 2024; 8: 2300911. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ryu J, Park M, Cho J. Advanced technologies for high-energy aluminum-air batteries. Adv Mater 2019; 31: 1804784. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Egan DR, Ponce de León C, Wood RJK, et al. Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 2013; 236: 293-310. [Article] [CrossRef] [Google Scholar]
  • Mokhtar M, Talib MZM, Majlan EH, et al. Recent developments in materials for aluminum–air batteries: A review. J Industrial Eng Chem 2015; 32: 1-20. [Article] [CrossRef] [Google Scholar]
  • Liu K, Li K, Peng Q, et al. A brief review on key technologies in the battery management system of electric vehicles. Front Mech Eng 2019; 14: 47-64. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang L, Li X, Yang M, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater 2021; 41: 522-545. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Rani B, Yadav JK, Saini P, et al. Aluminum–air batteries: Current advances and promises with future directions. RSC Adv 2024; 14: 17628-17663. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Goel P, Dobhal D, Sharma RC. Aluminum–air batteries: A viability review. J Energy Storage 2020; 28: 101287. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ipadeola AK, Eid K, Abdullah AM. Porous transition metal-based nanostructures as efficient cathodes for aluminium-air batteries. Curr Opin Electrochem 2023; 37: 101198. [Article] [CrossRef] [Google Scholar]
  • Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 2013; 226: 272-288. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Miao Y, Hynan P, von Jouanne A, et al. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019; 12: 1074. [Article] [CrossRef] [Google Scholar]
  • Xiong R, Sun F, Chen Z, et al. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Appl Energy 2014; 113: 463-476. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Sun Q, Li W, et al. A comprehensive review on recent progress in aluminum–air batteries. Green Energy Environ 2017; 2: 246-277. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ye L, Hong Y, Liao M, et al. Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater 2020; 28: 364-374. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Q, Chang Z, Li Z, et al. Flexible metal–air batteries: Progress, challenges, and perspectives. Small Methods 2018; 2: 1700231. [Article] [CrossRef] [Google Scholar]
  • Nayem SMA, Islam S, Mohamed M, et al. A mechanistic overview of the current status and future challenges of aluminum anode and electrolyte in aluminum-air batteries. Chem Rec 2023; 24: e202300005 [Google Scholar]
  • Zhao Q, Yu H, Fu L, et al. Electrolytes for aluminum–air batteries: Advances, challenges, and applications. Sustain Energy Fuels 2023; 7: 1353-1370. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Li Q, Bjerrum NJ. Aluminum as anode for energy storage and conversion: A review. J Power Sources 2002; 110: 1-10. [Article] [Google Scholar]
  • Alva S, Sundari R, Wijaya HF, et al. Preliminary study on aluminum-air battery applying disposable soft drink cans and arabic gum polymer. 1st Nommensen International Conference on Technology and Engineering, 11–12 July 2017, Medan, Indonesia, 237: 012039 [Google Scholar]
  • Ambroz F, Macdonald TJ, Nann T. Trends in aluminium‐based intercalation batteries. Adv Energy Mater 2017; 7: 1602093. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xia C, Kwok CY, Nazar LF. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 2018; 361: 777-781. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang HF, Xu Q. Materials design for rechargeable metal-air batteries. Matter 2019; 1: 565-595. [Article] [CrossRef] [Google Scholar]
  • Rahman MA, Wang X, Wen C. High energy density metal-air batteries: A review. J Electrochem Soc 2013; 160: A1759-A1771. [Article] [CrossRef] [Google Scholar]
  • Pramuanjaroenkij A, Kakaç S. The fuel cell electric vehicles: The highlight review. Int J Hydrogen Energy 2023; 48: 9401-9425. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xu Q, Guo Z, Xia L, et al. A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Convers Manage 2022; 253: 115175. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhao J, Liu H, Li X. Structure, property, and performance of catalyst layers in proton exchange membrane fuel cells. Electrochem Energy Rev 2023; 6: 13. [Article] [CrossRef] [Google Scholar]
  • Zhang X, Wang XG, Xie Z, et al. Recent progress in rechargeable alkali metal–air batteries. Green Energy Environ 2016; 1: 4-17. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Huang Y, Wang Y, Tang C, et al. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal–air batteries. Adv Mater 2019; 31: 1803800. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: A review of alloys, electrolytes and design. J Power Sources 2021; 498: 229762. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu X, Jiao H, Wang M, et al. Current progresses and future prospects on aluminium–air batteries. Int Mater Rev 2022; 67: 734-764. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang C, Yu Y, Niu J, et al. Recent progress of metal–air batteries—A mini review. Appl Sci 2019; 9: 2787. [Article] [CrossRef] [Google Scholar]
  • Liu Q, Pan Z, Wang E, et al. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater 2020; 27: 478-505. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sun W, Wang F, Zhang B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021; 371: 46-51. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Tan P, Chen B, Xu H, et al. Flexible Zn– and Li–air batteries: Recent advances, challenges, and future perspectives. Energy Environ Sci 2017; 10: 2056-2080. [Article] [CrossRef] [Google Scholar]
  • Li G, Wang X, Fu J, et al. Pomegranate‐inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal–air batteries. Angew Chem Int Ed 2016; 55: 4977-4982. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hu T, Fang Y, Su L, et al. A novel experimental study on discharge characteristics of an aluminum-air battery. Int J Energy Res 2019; 43: 1839-1847. [Article] [CrossRef] [Google Scholar]
  • Wu P, Wu S, Sun D, et al. A review of Al alloy anodes for Al–air batteries in neutral and alkaline aqueous electrolytes. Acta Metall Sin (Engl Lett) 2021; 34: 309-320. [Article] [Google Scholar]
  • Xue Y, Sun S, Wang Q, et al. Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. J Mater Chem A 2018; 6: 10595-10626. [Article] [CrossRef] [Google Scholar]
  • Lv C, Zhu Y, Li Y, et al. Hydrogen-bonds reconstructing electrolyte enabling low-temperature aluminum-air batteries. Energy Storage Mater 2023; 59: 102756. [Article] [CrossRef] [Google Scholar]
  • Chawla N. Recent advances in air-battery chemistries. Mater Today Chem 2019; 12: 324-331 [NASA ADS] [CrossRef] [Google Scholar]
  • Cho YJ, Park IJ, Lee HJ, et al. Aluminum anode for aluminum–air battery—Part I: Influence of aluminum purity. J Power Sources 2015; 277: 370-378. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Tang Y, Lu L, Roesky HW, et al. The effect of zinc on the aluminum anode of the aluminum–air battery. J Power Sources 2004; 138: 313-318. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Tan WC, Saw LH, Yew MC, et al. Analysis of the polypropylene-based aluminium-air battery. Front Energy Res 2021; 9: 599846. [Article] [CrossRef] [Google Scholar]
  • Gelman D, Lasman I, Elfimchev S, et al. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J Power Sources 2015; 285: 100-108. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Hou C, Chen S, Wang Z, et al. Effect of 6‐thioguanine, as an electrolyte additive, on the electrochemical behavior of an Al-air battery. MaterCorros 2020; 71: 1480-1487 [Google Scholar]
  • Sovizi MR, Abbasi R. The effect of gum arabic and zinc oxide hybrid inhibitor on the performance of aluminium as galvanic anode in alkaline batteries. J Adh Sci Tech 2018; 32: 2590-2603. [Article] [CrossRef] [Google Scholar]
  • Deyab MA. Effect of nonionic surfactant as an electrolyte additive on the performance of aluminum-air battery. J Power Sources 2019; 412: 520-526 [NASA ADS] [CrossRef] [Google Scholar]
  • Sun Z, Lu H, Hong Q, et al. Evaluation of an alkaline electrolyte system for Al-air battery. ECS Electrochem Lett 2015; 4: A133-A136. [Article] [CrossRef] [Google Scholar]
  • Kang QX, Wang Y, Zhang XY. Experimental and theoretical investigation on calcium oxide and L-aspartic as an effective hybrid inhibitor for aluminum-air batteries. J Alloys Compd 2019; 774: 1069-1080. [Article] [CrossRef] [Google Scholar]
  • Teabnamang P, Kao-ian W, Nguyen MT, et al. High-capacity dual-electrolyte aluminum–air battery with circulating methanol anolyte. Energies 2020; 13: 2275. [Article] [CrossRef] [Google Scholar]
  • Grishina E, Gelman D, Belopukhov S, et al. Improvement of aluminum–air battery performances by the application of flax straw extract. ChemSusChem 2016; 9: 2103-2111. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Faegh E, Shrestha S, Zhao X, et al. In-depth structural understanding of zinc oxide addition to alkaline electrolytes to protect aluminum against corrosion and gassing. J Appl Electrochem 2019; 49: 895-907. [Article] [Google Scholar]
  • Ma J, Li W, Wang G, et al. Influences of L-cysteine/zinc oxide additive on the electrochemical behavior of pure aluminum in alkaline solution. J Electrochem Soc 2018; 165: A266-A272. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Jiang H, Yu S, Li W, et al. Inhibition effect and mechanism of inorganic-organic hybrid additives on three-dimension porous aluminum foam in alkaline Al-air battery. J Power Sources 2020; 448: 227460. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Zhang H, Liu Y, et al. Inhibitive effect of quaternary ammonium-type surfactants on the self-corrosion of the anode in alkaline aluminium-air battery. J Power Sources 2019; 434: 226723. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhu C, Yang H, Wu A, et al. Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al-air battery. J Power Sources 2019; 432: 55-64. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu J, Wang D, Zhang D, et al. Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries. J Power Sources 2016; 335: 1-11. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Wu S, Zhang Q, Sun D, et al. Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery. Chem Eng J 2020; 383: 123162. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Melzack N, Wills RGA. A review of energy storage mechanisms in aqueous aluminium technology. Front Chem Eng 2022; 4: 778265. [Article] [CrossRef] [Google Scholar]
  • Gu Y, Liu Y, Tong Y, et al. Improving discharge voltage of Al-air batteries by Ga3+ additives in NaCl-based electrolyte. Nanomaterials 2022; 12: 1336. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mori R. A novel aluminium-air rechargeable battery with Al2O3 as the buffer to suppress byproduct accumulation directly onto an aluminium anode and air cathode. RSC Adv 2014; 4: 30346-30351 [NASA ADS] [CrossRef] [Google Scholar]
  • Han B, Liang G. Neutral electrolyte aluminum air battery with open configuration. Rare Met 2006; 25: 360-363. [Article] [CrossRef] [Google Scholar]
  • Mori R. Addition of ceramic barriers to aluminum–air batteries to suppress by-product formation on electrodes. J Electrochem Soc 2015; 162: A288-A294. [Article] [CrossRef] [Google Scholar]
  • Yang L, Wu Y, Chen S, et al. A promising hybrid additive for enhancing the performance of alkaline aluminum-air batteries. Mater Chem Phys 2021; 257: 123787. [Article] [CrossRef] [Google Scholar]
  • Wu S, Hu S, Zhang Q, et al. Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery. Energy Storage Mater 2020; 31: 310-317. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang H, Leung DYC, Leung MKH, et al. Modeling of parasitic hydrogen evolution effects in an aluminum−air cell. Energy Fuels 2010; 24: 3748-3753. [Article] [CrossRef] [Google Scholar]
  • Fan L, Lu H, Leng J, et al. The study of industrial aluminum alloy as anodes for aluminum-air batteries in alkaline electrolytes. J Electrochem Soc 2016; 163: A8-A12. [Article] [CrossRef] [Google Scholar]
  • Haleem SMA, Wanees SA, Farouk A. Hydrogen production on aluminum in alkaline media. Prot Met Phys Chem 2021; 57: 906-916 [Google Scholar]
  • Irankhah A, Seyed Fattahi SM, Salem M. Hydrogen generation using activated aluminum/water reaction. Int J Hydrogen Energy 2018; 43: 15739-15748. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cai Y, Tong Y, Liu Y, et al. Study on thermal effect of aluminum-air battery. Nanomaterials 2023; 13: 646. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Fan L, Lu H. The effect of grain size on aluminum anodes for Al–air batteries in alkaline electrolytes. J Power Sources 2015; 284: 409-415. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li L, Ban C, Shi X, et al. Influence of a high magnetic field on the solidification structures of ternary Al–Fe–Zr alloy. J Mater Res 2017; 32: 2035-2044. [Article] [CrossRef] [Google Scholar]
  • Fan L, Lu H, Leng J, et al. The effect of crystal orientation on the aluminum anodes of the aluminum–air batteries in alkaline electrolytes. J Power Sources 2015; 299: 66-69. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kumar Y, Mooste M, Tammeveski K. Recent progress of transition metal-based bifunctional electrocatalysts for rechargeable zinc–air battery application. Curr Opin Electrochem 2023; 38: 101229. [Article] [CrossRef] [Google Scholar]
  • Gao J, Li Y, Yan Z, et al. Effects of solid-solute magnesium and stannate ion on the electrochemical characteristics of a high-performance aluminum anode/electrolyte system. J Power Sources 2019; 412: 63-70. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang Q, Miao H, Xue Y, et al. Performances of an Al–0.15 Bi–0.15 Pb–0.035 Ga alloy as an anode for Al–air batteries in neutral and alkaline electrolytes. RSC Adv 2017; 7: 25838-25847. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wu Z, Zhang H, Yang D, et al. Electrochemical behaviour and discharge characteristics of an Al–Zn–In–Sn anode for Al-air batteries in an alkaline electrolyte. J Alloys Compd 2020; 837: 155599. [Article] [CrossRef] [Google Scholar]
  • Wu Z, Zhang H, Zou J, et al. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Al-air battery by directional solidification technique and subsequent rolling process. J Alloys Compd 2020; 827: 154272. [Article] [CrossRef] [Google Scholar]
  • Tu J, Wang S, Li S, et al. The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte. J Electrochem Soc 2017; 164: A3292-A3302. [Article] [CrossRef] [Google Scholar]
  • Yang M, Liu Y, Shi Z, et al. Study on the electrochemical behavior of Al-6Zn-0.02In-1Mg-0.03Ti sacrificial anodes for long-term corrosion protection in the ocean. Corrosion 2020; 76: 366-372. [Article] [CrossRef] [Google Scholar]
  • Okobira T, Nguyen DT, Taguchi K. Effectiveness of doping zinc to the aluminum anode on aluminum-air battery performance. Int J Appl Electrom 2020; 64: 57-64 [Google Scholar]
  • Vu TN, Mokaddem M, Volovitch P, et al. The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al–Zn coatings. Electrochim Acta 2012; 74: 130-138. [Article] [CrossRef] [Google Scholar]
  • Zhao R, He P, Yu F, et al. Performance improvement for aluminum-air battery by using alloying anodes prepared from commercially pure aluminum. J Energy Storage 2023; 73: 108985. [Article] [CrossRef] [Google Scholar]
  • Xie Y, Meng X, Mao D, et al. Deformation-driven modification of Al-Li-Mg-Zn-Cu high-alloy aluminum as anodes for primary aluminum-air batteries. Scripta Mater 2022; 212: 114551. [Article] [CrossRef] [Google Scholar]
  • Liang R, Su Y, Sui XL, et al. Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery. J Solid State Electrochem 2019; 23: 53-62. [Article] [CrossRef] [Google Scholar]
  • Li L, Liu H, Yan Y, et al. Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys. Int J Hydrogen Energy 2019; 44: 12073-12084. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sun Z, Lu H, Fan L, et al. Performance of Al-air batteries based on Al–Ga, Al–In and Al–Sn alloy electrodes. J Electrochem Soc 2015; 162: A2116-A2122. [Article] [CrossRef] [Google Scholar]
  • Du BD, Wang W, Chen W, et al. Grain refinement and Al-water reactivity of Al-Ga-In-Sn alloys. Int J Hydrogen Energy 2017; 42: 21586-21596. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Park IJ, Choi SR, Kim JG. Aluminum anode for aluminum-air battery—Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution. J Power Sources 2017; 357: 47-55. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ma J, Zhang Y, Ma M, et al. Corrosion and discharge performance of a magnesium aluminum eutectic alloy as anode for magnesium–air batteries. Corrosion Sci 2020; 170: 108695. [Article] [CrossRef] [Google Scholar]
  • Zhou YJ, Xiong CH, Lu CB, et al. Design of 1 kw Al-air battery. AMM 2014; 535: 22-25. [Article] [CrossRef] [Google Scholar]
  • Zhang W, Hu T, Chen T, et al. Electrochemical performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) alloys used as the anode of an Al-air battery. Processes 2022; 10: 420. [Article] [CrossRef] [Google Scholar]
  • Rani B, Yadav JK, Saini P, et al. Impact of aluminum alloy grade as anode on electrochemical performance for Al-air cell in alkaline electrolyte. Energy Storage 2024; 6: e586. [Article] [CrossRef] [Google Scholar]
  • Liu X, Zhang P, Xue J, et al. High energy efficiency of Al-based anodes for Al-air battery by simultaneous addition of Mn and Sb. Chem Eng J 2021; 417: 128006. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jingling M, Jiuba W, Hongxi Z, et al. Electrochemical performances of Al–0.5Mg–0.1Sn–0.02In alloy in different solutions for Al–air battery. J Power Sources 2015; 293: 592-598. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wu Z, Zhang H, Tang S, et al. Effect of calcium on the electrochemical behaviors and discharge performance of Al–Sn alloy as anodes for Al–air batteries. Electrochim Acta 2021; 370: 137833. [Article] [CrossRef] [Google Scholar]
  • Ren J, Fu C, Dong Q, et al. Evaluation of impurities in aluminum anodes for Al-air batteries. ACS Sustain Chem Eng 2021; 9: 2300-2308. [Article] [CrossRef] [Google Scholar]
  • Ran Q, Shi H, Meng H, et al. Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat Commun 2022; 13: 576. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature 2017; 549: 365-369. [Article] [CrossRef] [Google Scholar]
  • Xiao R, Zhang X. Problems and issues in laser beam welding of aluminum–lithium alloys. J Manufacturing Processes 2014; 16: 166-175. [Article] [CrossRef] [Google Scholar]
  • Maárif MS, Fanani AZ, Oerbandono T, et al. Performance of Al-air battery with different electrolytes. Int J Integr Eng 2021; 13: 281-287 [Google Scholar]
  • Srinivas M, Adapaka SK, Neelakantan L. Solubility effects of Sn and Ga on the microstructure and corrosion behavior of Al-Mg-Sn-Ga alloy anodes. J Alloys Compd 2016; 683: 647-653. [Article] [CrossRef] [Google Scholar]
  • Zhang P, Liu X, Xue J, et al. The role of microstructural evolution in improving energy conversion of Al-based anodes for metal-air batteries. J Power Sources 2020; 451: 227806. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Galy C, Le Guen E, Lacoste E, et al. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences. Addit Manuf 2018;22: 165-175 [Google Scholar]
  • Azarniya A, Taheri AK, Taheri KK. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J AlloyCompd 2019;781: 945-983 [Google Scholar]
  • Zhang P, Gao Y, Liu Z, et al. Effect of cutting parameters on the corrosion resistance of 7A04 aluminum alloy in high speed cutting. Vacuum 2023; 212: 111968. [Article] [CrossRef] [Google Scholar]
  • Lee J, Yim CY, Lee DW, et al. Manufacturing and characterization of physically modified aluminum anodes based air battery with electrolyte circulation. Int J Pr Eng Man-Gt 2017; 4: 53-57 [Google Scholar]
  • Faegh E, Shrestha S, Zhao X, et al. In-depth structural understanding of zinc oxide addition to alkaline electrolytes to protect aluminum against corrosion and gassing. J Appl Electrochem 2019; 49: 895-907. [Article] [Google Scholar]
  • Cai S, Pan C, Li J, et al. Effect of Tween 85 and calcium malate as hybrid inhibitors on the performance of alkaline aluminum-air batteries. J Energy Storage 2024; 79: 110136. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Nie Y, Gao J, Wang E, et al. An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells. Electrochim Acta 2017; 248: 478-485. [Article] [CrossRef] [Google Scholar]
  • Rashvand avei M, Jafarian M, Moghanni Bavil Olyaei H, et al. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries. Mater Chem Phys 2013; 143: 133-142. [Article] [CrossRef] [Google Scholar]
  • Choi SR, Kim KM, Kim JG. Organic corrosion inhibitor without discharge retardation of aluminum-air batteries. J Mol Liquids 2022; 365: 120104. [Article] [CrossRef] [Google Scholar]
  • Zhu R, Xu G, Shao G, et al. Synergistic regulation of Al alloy anode/electrolyte interface layer in Al-air battery by composite inhibitor HEC-K2 SnO3. ACS Appl Energy Mater 2024; 7: 2120-2128. [Article] [CrossRef] [Google Scholar]
  • Choi SR, Song SJ, Kim JG. Hydrogen evolution inorganic inhibitors in alkaline electrolyte for aluminum-air battery. Int J Electrochem Sci 2020; 15: 8928-8942. [Article] [CrossRef] [Google Scholar]
  • Shayeb HAE, Wahab FMAE, Abedin SZE. Role of indium ions on the activation of aluminium. J Appl Electrochem 1999; 29: 601-609. [Article] [Google Scholar]
  • Hou C, Chen S, Wang Z, et al. Effect of 6-thioguanine, as an electrolyte additive, on the electrochemical behavior of an Al-air battery. Mater Corrosion 2020; 71: 1480-1487. [Article] [CrossRef] [Google Scholar]
  • Al‐Rawashdeh NAF, Maayta AK. Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions. Anti-Corrosion Methods Mater 2005; 52: 160-166. [Article] [CrossRef] [Google Scholar]
  • Verma C, Singh P, Bahadur I, et al. Electrochemical, thermodynamic, surface and theoretical investigation of 2-aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for aluminum in 0.5M NaOH. J Mol Liquids 2015; 209: 767-778. [Article] [CrossRef] [Google Scholar]
  • Brito PSD, Sequeira CAC. Organic inhibitors of the anode self-corrosion in aluminum-air batteries. J Fuel Cell Sci Tech 2014; 11: 011008. [Article] [CrossRef] [Google Scholar]
  • Moghadam Z, Shabani-Nooshabadi M, Behpour M. Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries. J Mol Liquids 2017; 242: 971-978. [Article] [CrossRef] [Google Scholar]
  • Arjomandi J, Moghanni-Bavil-Olyaei H, Parvin MH, et al. Inhibition of corrosion of aluminum in alkaline solution by a novel azo-schiff base: Experiment and theory. J Alloys Compd 2018; 746: 185-193. [Article] [CrossRef] [Google Scholar]
  • Halambek J, Jukić M, Berković K, et al. Investigation of novel heterocyclic compounds as inhibitors of Al-3Mg alloy corrosion in hydrochloric acid solutions. Int J Electrochem Sci 2012; 7: 1580-1601. [Article] [CrossRef] [Google Scholar]
  • Abiola OK, Otaigbe JOE. The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution. Corrosion Sci 2009; 51: 2790-2793. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Nian Q, Zhang X, Feng Y, et al. Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett 2021; 6: 2174-2180. [Article] [CrossRef] [Google Scholar]
  • Wan S, Zhang T, Chen H, et al. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium. Industrial Crops Products 2022; 178: 114649. [Article] [CrossRef] [Google Scholar]
  • Liu Y, Gao Z, Li Z, et al. Tailoring non‐polar groups of quaternary ammonium salts for inhibiting hydrogen evolution reaction of aluminum‐air battery. Adv Funct Mater 2024; 34: 2315747. [Article] [CrossRef] [Google Scholar]
  • Sun KEK, Hoang TKA, Doan TNL, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl Mater Interfaces 2017; 9: 9681-9687. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lin MH, Huang CJ, Cheng PH, et al. Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc–air batteries: Mechanism studies of dendrite suppression and corrosion inhibition. J Mater Chem A 2020; 8: 20637-20649. [Article] [CrossRef] [Google Scholar]
  • Zhang Y, Han X, Liu R, et al. Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn (100) crystal plane to construct surficial dendrite‐free zinc metal anode. Small 2022; 18: 2105978. [Article] [CrossRef] [Google Scholar]
  • Bu YF, Jiang WY, Liu HT, et al. Hydrogen bond interaction in the trade-off between electrolyte voltage window and supercapacitor low-temperature performances. ChemSusChem 2022; 15: e202200539 [CrossRef] [Google Scholar]
  • Meng Q, Bai Q, Zhao R, et al. Attenuating water activity through impeded proton transfer resulting from hydrogen bond enhancement effect for fast and ultra‐stable Zn metal anode. Adv Energy Mater 2023; 13: 2302828. [Article] [CrossRef] [Google Scholar]
  • Xu J, Li H, Jin Y, et al. Understanding the electrical mechanisms in aqueous zinc metal batteries: From electrostatic interactions to electric field regulation. Adv Mater 2024; 36: 2309726. [Article] [CrossRef] [Google Scholar]
  • Yan T, Tao M, Liang J, et al. Refining the inner Helmholtz plane adsorption for achieving a stable solid-electrolyte interphase in reversible aqueous Zn-ion pouch cells. Energy Storage Mater 2024; 65: 103190. [Article] [CrossRef] [Google Scholar]
  • Hao Y, Feng D, Hou L, et al. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv Sci 2022; 9: 2104832. [Article] [CrossRef] [Google Scholar]
  • Wang X, Meng J, Lin X, et al. Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv Funct Mater 2021; 31: 2106114. [Article] [CrossRef] [Google Scholar]
  • Zeng YX, Pei ZH, Guo Y, et al. Zincophilic interfacial manipulation against dendrite growth and side reactions for stable Zn metal anodes. Angew Chem Int Ed 2023; 62: e202312145 [CrossRef] [Google Scholar]
  • Feng DD, Jiao YC, Wu PY. Guiding Zn uniform deposition with polymer additives for long-lasting and highly utilized Zn metal anodes. Angew Chem Int Ed 2023; 62: e202314456 [CrossRef] [Google Scholar]
  • Su T‐T, Wang K, Chi B‐Y, et al. Stripy zinc array with preferential crystal plane for the ultra-long lifespan of zinc metal anodes for zinc ion batteries. EcoMat 2022; 4: e12219. [Article] [CrossRef] [Google Scholar]
  • Cheng H, Wang T, Li Z, et al. Anode interfacial layer construction via hybrid inhibitors for high-performance Al–air batteries. ACS Appl Mater Interfaces 2021; 13: 51726-51735. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lee W, Choi SR, Kim JG. Spent coffee grounds as eco-friendly additives for aluminum–air batteries. ACS Omega 2021; 6: 25529-25538. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wu P, Zhao Q, Yu H, et al. Modification on water electrochemical environment for durable Al-air battery: Achieved by a low-cost sucrose additive. Chem Eng J 2022; 438: 135538. [Article] [CrossRef] [Google Scholar]
  • Wang T, Cheng H, Tian Z, et al. Simultaneous regulation on electrolyte structure and electrode interface with glucose additive for high-energy aluminum metal-air batteries. Energy Storage Mater 2022; 53: 371-380. [Article] [CrossRef] [Google Scholar]
  • Gelman D, Shvartsev B, Ein-Eli Y. Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2014; 2: 20237-20242. [Article] [CrossRef] [Google Scholar]
  • Levy NR, Auinat M, Ein-Eli Y. Tetra-butyl ammonium fluoride—An advanced activator of aluminum surfaces in organic electrolytes for aluminum-air batteries. Energy Storage Mater 2018; 15: 465-474. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Di Palma TM, Migliardini F, Caputo D, et al. Xanthan and κ-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries. Carbohydrate Polyms 2017; 157: 122-127. [Article] [CrossRef] [Google Scholar]
  • Gelman D, Shvartsev B, Ein-Eli Y. Challenges and prospect of non-aqueous non-alkali (NANA) metal–air batteries. Top Curr Chem (Z) 2016; 374: 82. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang T, Yang T, Luo D, et al. High‐energy‐density solid‐state metal–air batteries: Progress, challenges, and perspectives. Small 2024; 20: 2309306. [Article] [CrossRef] [Google Scholar]
  • Revel R, Audichon T, Gonzalez S. Non-aqueous aluminium–air battery based on ionic liquid electrolyte. J Power Sources 2014; 272: 415-421. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang Z, Zuo C, Liu Z, et al. All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J Power Sources 2014; 251: 470-475. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang L, Liu F, Wang W, et al. A high-capacity dual-electrolyte aluminum/air electrochemical cell. RSC Adv 2014; 4: 30857-30863. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen B, Leung DYC, Xuan J, et al. A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte. J Power Sources 2016; 336: 19-26. [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.