Issue
Natl Sci Open
Volume 4, Number 1, 2025
Special Topic: Nuclear Environment Advances
Article Number 20240028
Number of page(s) 35
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20240028
Published online 20 September 2024
  • Carley S, Konisky DM. The justice and equity implications of the clean energy transition. Nat Energy 2020; 5: 569-577. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fell H, Gilbert A, Jenkins JD, et al. Nuclear power and renewable energy are both associated with national decarbonization. Nat Energy 2022; 7: 25-29. [Article] [Google Scholar]
  • Yao Z, Lum Y, Johnston A, et al. Machine learning for a sustainable energy future. Nat Rev Mater 2023; 8: 202-215. [Article]arxiv:2210.10391 [Google Scholar]
  • Kintisch E. Congress tells DOE to take fresh look at recycling spent reactor fuel. Science 2005; 310: 1406. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Freese LM, Chossière GP, Eastham SD, et al. Nuclear power generation phase-outs redistribute US air quality and climate-related mortality risk. Nat Energy 2023; 8: 492-503. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • World Nuclear Association. Nuclear Power in the World Today. https://world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today#1 (11 July 2004, date last accessed) [Google Scholar]
  • Geist A, Adnet JM, Bourg S, et al. An overview of solvent extraction processes developed in Europe for advanced nuclear fuel recycling, part 1—Heterogeneous recycling. Separation Sci Tech 2021; 56: 1866-1881. [Article] [Google Scholar]
  • Lyseid Authen T, Adnet JM, Bourg S, et al. An overview of solvent extraction processes developed in Europe for advanced nuclear fuel recycling, Part 2—Homogeneous recycling. Separation Sci Tech 2022; 57: 1724-1744. [Article] [Google Scholar]
  • Cutler CS, Hennkens HM, Sisay N, et al. Radiometals for combined imaging and therapy. Chem Rev 2013; 113: 858-883. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mayer K, Wallenius M, Varga Z. Nuclear forensic science: Correlating measurable material parameters to the history of nuclear material. Chem Rev 2013; 113: 884-900. [Article] [Google Scholar]
  • Haire RG. Californium. In: Morss LR, Edelstein NM, Fuger J (eds.). The Chemistry of the Actinide and Transactinide Elements. Dordrecht: Springer Netherlands, 2006, 1499–1576 [CrossRef] [Google Scholar]
  • Lumetta GJ, Thompson MC, Penneman RA, et al. Curium. In: Morss LR, Edelstein NM, Fuger J (eds.). The Chemistry of the Actinide and Transactinide Elements. Dordrecht: Springer Netherlands, 2006, 1397–1443 [CrossRef] [Google Scholar]
  • Runde WH, Schulz WW. Americium. In: Morss LR, Edelstein NM, Fuger J (eds.). The Chemistry of the Actinide and Transactinide Elements. Dordrecht: Springer Netherlands, 2006, 1265–1395 [CrossRef] [Google Scholar]
  • Türler A, Pershina V. Advances in the production and chemistry of the heaviest elements. Chem Rev 2013; 113: 1237-1312. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zsabka P, Wilden A, Van Hecke K, et al. Beyond U/Pu separation: Separation of americium from the highly active PUREX raffinate. J Nucl Mater 2023; 581: 154445. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Herbst RS, Baron P, Nilsson M. 6—Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. In: Nash KL, Lumetta GJ (eds.). Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment. Woodhead Publishing, 2011, 141–175 [CrossRef] [Google Scholar]
  • Christiansen B, Apostolidis C, Carlos R, et al. Advanced aqueous reprocessing in P&T strategies: Process demonstrations on genuine fuels and targets. RadioChim Acta 2004; 92: 475-480. [Article] [Google Scholar]
  • Philip Horwitz E, Kalina DC, Diamond H, et al. The TRUEX process—A process for the extraction of the transuranic elements from nitric acid wastes utilizing modified PUREX solvent. Solvent Extr Ion Exc 1985; 3: 75-109. [Article] [Google Scholar]
  • Schulz WW, Horwitz EP. The TRUEX process and the management of liquid TRU waste. Separation Sci Tech 1988; 23: 1191-1210. [Article] [Google Scholar]
  • Berthon L, Morel JM, Zorz N, et al. Diamex process for minor actinide partitioning: Hydrolytic and radiolytic degradations of malonamide extractants. Separation Sci Tech 2001; 36: 709-728. [Article] [Google Scholar]
  • Serrano-Purroy D, Baron P, Christiansen B, et al. Recovery of minor actinides from HLLW using the DIAMEX process. RadioChim Acta 2005; 93: 351-355. [Article] [Google Scholar]
  • Nash KL. The chemistry of TALSPEAK: A review of the science. Solvent Extr Ion Exch 2015; 33: 1-55 [Google Scholar]
  • Magnusson D, Christiansen B, Foreman MRS, et al. Demonstration of a SANEX process in centrifugal contactors using the CyMe4—BTBP molecule on a genuine fuel solution. Solvent Extr Ion Exc 2009; 27: 97-106. [Article] [Google Scholar]
  • Modolo G, Wilden A, Kaufholz P, et al. Development and demonstration of innovative partitioning processes (i-SANEX and 1-cycle SANEX) for actinide partitioning. Prog Nucl Energy 2014; 72: 107-114. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yang X, Xu L, Zhang A, et al. Organophosphorus extractants: A critical choice for actinides/lanthanides separation in nuclear fuel cycle. Chem Eur J 2023; 29: e202300456. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu Y. The separation of americium from light lanthanides by cyanex 301 extraction. Radiochim Acta 1995; 68: 95-98. [Article] [Google Scholar]
  • Zhu Y, Chen J, Jiao R. Extraction of Am(III) and Eu(III) from nitrate solution with purified cyanex 301. Solvent Extr Ion Exc 1996; 14: 61-68. [Article] [Google Scholar]
  • Modolo G, Kluxen P, Geist A. Demonstration of the LUCA process for the separation of americium(III) from curium(III), californium(III), and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate. RadioChim Acta 2010; 98: 193-201. [Article] [CrossRef] [Google Scholar]
  • Matveev P, Mohapatra PK, Kalmykov SN, et al. Solvent extraction systems for mutual separation of Am(III) and Cm(III) from nitric acid solutions. A review of recent state-of-the-art. Solvent Extr Ion Exc 2021; 39: 679-713. [Article] [Google Scholar]
  • Lumetta GJ, Gelis AV, Braley JC, et al. The TRUSPEAK concept: Combining CMPO and HDEHP for separating trivalent lanthanides from the transuranic elements. Solvent Extr Ion Exc 2013; 31: 223-236. [Article] [CrossRef] [Google Scholar]
  • Gelis AV, Lumetta GJ. Actinide lanthanide separation process—ALSEP. Ind Eng Chem Res 2014; 53: 1624-1631. [Article] [Google Scholar]
  • Carrott M, Bell K, Brown J, et al. Development of a new flowsheet for co-separating the transuranic actinides: The “EURO-GANEX” process. Solvent Extr Ion Exc 2014; 32: 447-467. [Article] [CrossRef] [Google Scholar]
  • Rostaing C, Poinssot C, Warin D, et al. Development and validation of the EXAm separation process for single Am recycling. Procedia Chem 2012; 7: 367-373. [Article] [Google Scholar]
  • Shimada T, Ogumo S, Ishihara N, et al. A study on the technique of spent fuel reprocessing with supercritical fluid direct extraction method (Super-DIREX method). J Nucl Sci Tech 2002; 39: 757-760. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu X, Liang J, Xu J. Simplified Chinese TRPO process to extract and recover transuranium elements from high‐level liquid waste. Solvent Extr Ion Exc 2004; 22: 163-173. [Article] [Google Scholar]
  • Modolo G, Asp H, Schreinemachers C, et al. Development of a TODGA based process for partitioning of actinides from a PUREX raffinate part I: Batch extraction optimization studies and stability tests. Solvent Extr Ion Exc 2007; 25: 703-721. [Article] [Google Scholar]
  • Magnusson D, Christiansen B, Glatz J‐P, et al. Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate. Solvent Extr Ion Exc 2009; 27: 26-35. [Article] [Google Scholar]
  • Law JD, Herbst RS, Todd TA, et al. The universal solvent extraction (UNEX) process. II. Flowsheet development and demonstration of the UNEX process for the separation of cesium, strontium, and actinides from actual acidic radioactive waste. Solvent Extr Ion Exc 2001; 19: 23-36. [Article] [Google Scholar]
  • Herbst RS, Law JD, Todd TA, et al. Universal solvent extraction (UNEX) flowsheet testing for the removal of cesium, strontium, and actinide elements from radioactive, acidic dissolved calcine waste. Solvent Extr Ion Exc 2002; 20: 429-445. [Article] [Google Scholar]
  • Kumari I, Kumar BVR, Khanna A. A review on UREX processes for nuclear spent fuel reprocessing. Nucl Eng Des 2020; 358: 110410. [Article] [Google Scholar]
  • Horwitz EP, Dietz ML, Fisher DE. SREX: A newprocess for the extraction and recovery of strontium from acidic nuclear waste streams. Solvent Extr Ion Exch 1991; 9: 1-25 [Google Scholar]
  • Leonard RA, Conner C, Liberatore MW, et al. Development of a solvent extraction process for cesium removal from SRS tank waste. Separation Sci Tech 2001; 36: 743-766. [Article] [Google Scholar]
  • Alexander V. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem Rev 1995; 95: 273-342. [Article] [Google Scholar]
  • Dam HH, Reinhoudt DN, Verboom W. Multicoordinate ligands for actinide/lanthanide separations. Chem Soc Rev 2007; 36: 367-377. [Article] [Google Scholar]
  • Kolarik Z. Complexation and separation of lanthanides(III) and actinides(III) by heterocyclic N-donors in solutions. Chem Rev 2008; 108: 4208-4252. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Runde WH, Mincher BJ. Higher oxidation states of americium: Preparation, characterization and use for separations. Chem Rev 2011; 111: 5723-5741. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lewis F, Hudson M, Harwood L. Development of highly selective ligands for separations of actinides from lanthanides in the nuclear fuel cycle. Synlett 2011; 2011: 2609-2632. [Article] [Google Scholar]
  • Ansari SA, Pathak P, Mohapatra PK, et al. Chemistry of diglycolamides: Promising extractants for actinide partitioning. Chem Rev 2012; 112: 1751-1772. [Article] [Google Scholar]
  • Hudson MJ, Harwood LM, Laventine DM, et al. Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides. Inorg Chem 2013; 52: 3414-3428. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Panak PJ, Geist A. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem Rev 2013; 113: 1199-1236. [Article] [Google Scholar]
  • Florek J, Giret S, Juère E, et al. Functionalization of mesoporous materials for lanthanide and actinide extraction. Dalton Trans 2016; 45: 14832-14854. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Leoncini A, Huskens J, Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 2017; 46: 7229-7273. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Götzke L, Schaper G, März J, et al. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019; 386: 267-309. [Article] [Google Scholar]
  • Cheisson T, Schelter EJ. Rare earth elements: Mendeleev’s bane, modern marvels. Science 2019; 363: 489-493. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Bessen NP, Jackson JA, Jensen MP, et al. Sulfur donating extractants for the separation of trivalent actinides and lanthanides. Coord Chem Rev 2020; 421: 213446. [Article] [CrossRef] [Google Scholar]
  • Xu L, Yang X, Zhang A, et al. Separation and complexation of f-block elements using hard-soft donors combined phenanthroline extractants. Coord Chem Rev 2023; 496: 215404. [Article] [Google Scholar]
  • Wu Y, Liu N, Ding SD. Water-soluble ligands used in the separation of actinides and the partitioning of trivalent lanthanides from actinides. Prog Chem 2014; 26: 1655-1664 [Google Scholar]
  • Wang Y, Shield KM, Abergel RJ. Hydrophilic chelators for aqueous reprocessing of spent nuclear fuel. Sep Purif Rev 2024; 53: 119-137. [Article] [Google Scholar]
  • Hancock RD. The pyridyl group in ligand design for selective metal ion complexation and sensing. Chem Soc Rev 2013; 42: 1500-1524. [Article] [Google Scholar]
  • Byrne JP, Kitchen JA, Gunnlaugsson T. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: A new versatile terdentate ligand for supramolecular and coordination chemistry. Chem Soc Rev 2014; 43: 5302-5325. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Retegan T, Ekberg C, Englund S, et al. The behaviour of organic solvents containing C5-BTBP and CyMe4-BTBP at low irradiation doses. RadioChim Acta 2007; 95: 637-642. [Article] [CrossRef] [Google Scholar]
  • Fermvik A, Berthon L, Ekberg C, et al. Radiolysis of solvents containing C5-BTBP: Identification of degradation products and their dependence on absorbed dose and dose rate. Dalton Trans 2009; : 6421-6430. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Horne GP, Mezyk SP, Moulton N, et al. Time-resolved and steady-state irradiation of hydrophilic sulfonated bis-triazinyl-(bi)pyridines–modelling radiolytic degradation. Dalton Trans 2019; 48: 4547-4554. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Horne GP, Wilden A, Mezyk SP, et al. Gamma radiolysis of hydrophilic diglycolamide ligands in concentrated aqueous nitrate solution. Dalton Trans 2019; 48: 17005-17013. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mossini E, Macerata E, Brambilla L, et al. Radiolytic degradation of hydrophilic PyTri ligands for minor actinide recycling. J Radioanal Nucl Chem 2019; 322: 1663-1673. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Distler P, Mindova M, Sebesta J, et al. Stability of different BTBP and BTPhen extracting or masking compounds against γ radiation. ACS Omega 2021; 6: 26416-26427. [Article] [Google Scholar]
  • Neidig ML, Clark DL, Martin RL. Covalency in f-element complexes. Coord Chem Rev 2013; 257: 394-406. [Article] [Google Scholar]
  • Bhattacharyya A, Mohapatra PK. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: A review. RadioChim Acta 2019; 107: 931-949. [Article] [CrossRef] [Google Scholar]
  • Geist A, Panak PJ. Recent progress in trivalent actinide and lanthanide solvent extraction and coordination chemistry with triazinylpyridine N donor ligands. Solvent Extr Ion Exc 2021; 39: 128-151. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Archer EM, Galley SS, Jackson JA, et al. Investigation of f-element interactions with functionalized diamides of phenanthroline-based ligands. Solvent Extr Ion Exc 2023; 41: 697-740. [Article] [CrossRef] [Google Scholar]
  • Musikas C, Le Marois G, Fitoussi R, et al. (Eds.). ACS Symposium Series 117. Washington, DC: American Chemical Society, 1980 [Google Scholar]
  • Kolarik (ret.) Z, Mullich U, Gassner F. Extraction of Am(III) and Eu(III) nitrates by 2-6-di-(5,6-dipropyl-1,2,4-triazin-3-yl)pyridines 1. Solvent Extr Ion Exc 1999; 17: 1155-1170. [Article] [Google Scholar]
  • Kolarik Z, Müllich U, Gassner F. Selective extraction of Am(III) over Eu(III) by 2,6-ditriazolyl- and 2,6-ditriazinylpyridines 1. Solvent Extr Ion Exc 1999; 17: 23-32. [Article] [Google Scholar]
  • Hill C, Guillaneux D, Berthon L, et al. Sanex-btp process development studies. J Nucl Sci Tech 2002; 39: 309-312. [Article] [Google Scholar]
  • Geist A, Hill C, Modolo G, et al. 6,6′‐bis(5,5,8,8‐tetramethyl‐5,6,7,8‐tetrahydro‐benzo[1,2,4]triazin‐3‐yl) [2,2′]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr Ion Exc 2006; 24: 463-483. [Article] [Google Scholar]
  • Lewis FW, Harwood LM, Hudson MJ, et al. Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand. J Am Chem Soc 2011; 133: 13093-13102. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lewis FW, Harwood LM, Hudson MJ, et al. BTBPs versus BTPhens: Some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens. Inorg Chem 2013; 52: 4993-5005. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xiao CL, Wang CZ, Yuan LY, et al. Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: A hard–soft donor combined strategy. Inorg Chem 2014; 53: 1712-1720. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Jansone-Popova S, Ivanov AS, Bryantsev VS, et al. Bis-lactam-1,10-phenanthroline (BLPhen), a new type of preorganized mixed N,O-donor ligand that separates Am(III) over Eu(III) with exceptionally high efficiency. Inorg Chem 2017; 56: 5911-5917. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xu L, Pu N, Li Y, et al. Selective separation and complexation of trivalent actinide and lanthanide by a tetradentate soft–hard donor ligand: Solvent extraction, spectroscopy, and DFT calculations. Inorg Chem 2019; 58: 4420-4430. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tian D, Liu Y, Kang Y, et al. A simple yet efficient hydrophilic phenanthroline-based ligand for selective Am(III) separation under high acidity. ACS Cent Sci 2023; 9: 1642-1649. [Article] [Google Scholar]
  • Cao H, Kang Y, Li B, et al. Amine-terminated phenanthroline diimides as aqueous masking agents for Am(III)/Eu(III) separation: An alternative ligand design strategy for water-soluble lanthanide/actinide chelating ligands. Inorg Chem 2024; 63: 10511-10518. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu Y, Bao M, Wang L, et al. Ligand structure optimization leads to efficient acid-resist Am(III)/Eu(III) separation in n-octanol. Chem Eng J 2024; 485: 149730. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Kang Y, Bao M, et al. Hydroxyl-group functionalized phenanthroline diimides as efficient masking agents for Am(III)/Eu(III) separation under harsh conditions. J Hazard Mater 2024; 462: 132756. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Ren P, Huang P, Yang X, et al. Hydrophilic sulfonated 2,9-diamide-1,10-phenanthroline endowed with a highly effective ligand for separation of americium(III) from europium(III): Extraction, spectroscopy, and density functional theory calculations. Inorg Chem 2021; 60: 357-365. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hudson MJ, Boucher CE, Braekers D, et al. New bis(triazinyl) pyridines for selective extraction of americium(III). New J Chem 2006; 30: 1171-1183. [Article] [CrossRef] [Google Scholar]
  • Steppert M, Císařová I, Fanghänel T, et al. Complexation of europium(III) by bis(dialkyltriazinyl)bipyridines in 1-octanol. Inorg Chem 2012; 51: 591-600. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Grimes TS, Heathman CR, Jansone-Popova S, et al. Thermodynamic, spectroscopic, and computational studies of f-element complexation by N-hydroxyethyl-diethylenetriamine-N,N′,N″,N″-tetraacetic acid. Inorg Chem 2017; 56: 1722-1733. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Geist A, Müllich U, Magnusson D, et al. Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine in nitric acid. Solvent Extr Ion Exc 2012; 30: 433-444. [Article] [Google Scholar]
  • Lewis FW, Harwood LM, Hudson MJ, et al. Hydrophilic sulfonated bis-1,2,4-triazine ligands are highly effective reagents for separating actinides(III) from lanthanides(III) via selective formation of aqueous actinide complexes. Chem Sci 2015; 6: 4812-4821. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Edwards AC, Mocilac P, Geist A, et al. Hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline ligands enable selective Am(III) separation: A step further towards sustainable nuclear energy. Chem Commun 2017; 53: 5001-5004. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Weßling P, Maag M, Baruth G, et al. Complexation and extraction studies of trivalent actinides and lanthanides with water-soluble and CHON-compatible ligands for the selective extraction of americium. Inorg Chem 2022; 61: 17719-17729. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wan YQ, Hao H, Yu L, et al. Novel hydrophilic bistriazolyl-phenanthroline ligands with improved solubility and performance in An/Ln separations. RSC Adv 2023; 13: 21982-21990. [Article] [Google Scholar]
  • He L, Wang X, Li Q, et al. Novel water-soluble aromatic bisdiglycolamide masking agents for the separation of trivalent americium over lanthanides by NTAamide(n-Oct) extractant. J Environ Chem Eng 2023; 11: 109536. [Article] [Google Scholar]
  • Macerata E, Mossini E, Scaravaggi S, et al. Hydrophilic clicked 2,6-bis-triazolyl-pyridines endowed with high actinide selectivity and radiochemical stability: Toward a closed nuclear fuel cycle. J Am Chem Soc 2016; 138: 7232-7235. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Percástegui EG, Ronson TK, Nitschke JR. Design and applications of water-soluble coordination cages. Chem Rev 2020; 120: 13480-13544. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Bünzli JCG. On the design of highly luminescent lanthanide complexes. Coord Chem Rev 2015; 293-294: 19-47. [Article] [Google Scholar]
  • Nash KL. Chapter 121 separation chemistry for lanthanides and trivalent actinides. In: Handbook on the Physics and Chemistry of Rare Earths. Elsevier, 1994, 197–238 [Google Scholar]
  • Deacon G. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 1980; 33: 227-250. [Article] [CrossRef] [Google Scholar]
  • Casellato U, Vigato PA, Vidali M. Actinide complexes with carboxylic acids. Coord Chem Rev 1978; 26: 85-159. [Article] [CrossRef] [Google Scholar]
  • Ouchi A, Suzuki Y, Ohki Y, et al. Structure of rare earth carboxylates in dimeric and polymeric forms. Coord Chem Rev 1988; 92: 29-43. [Article] [Google Scholar]
  • Janicki R, Mondry A, Starynowicz P. Carboxylates of rare earth elements. Coord Chem Rev 2017; 340: 98-133. [Article] [Google Scholar]
  • Grimes TS, Nilsson MA, Nash KL. Lactic acid partitioning in TALSPEAK extraction systems. Sep Sci Technol 2010; 45: 1725-1732. [Article] [Google Scholar]
  • Braley JC, Grimes TS, Nash KL. Alternatives to HDEHP and DTPA for simplified TALSPEAK separations. Ind Eng Chem Res 2012; 51: 629-638. [Article] [Google Scholar]
  • Nilsson M, Nash KL. A review of the development and operational characteristics of the TALSPEAK process. Solvent Extr Ion Exc 2007; 25: 665-701. [Article] [Google Scholar]
  • Braley JC, Carter JC, Sinkov SI, et al. The role of carboxylic acids in TALSQuEAK separations. J Coord Chem 2012; 65: 2862-2876. [Article] [Google Scholar]
  • Sasaki Y, Sugo Y, Suzuki S, et al. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane system. Solvent Extr Ion Exc 2001; 19: 91-103. [Article] [Google Scholar]
  • Sasaki Y, Tsubata Y, Kitatsuji Y, et al. Novel soft–hard donor ligand, NTAamide, for mutual separation of trivalent actinoids and lanthanoids. Chem Lett 2013; 42: 91-92 [CrossRef] [Google Scholar]
  • Wang Z, Ding S, Hu X, et al. Selective extraction of americium(III) over europium(III) ions in nitric acid solution by NTAamide(C8) using a novel water-soluble bisdiglycolamide as a masking agent. Sep Purif Technol 2017; 181: 148-158. [Article] [Google Scholar]
  • Whittaker D, Geist A, Modolo G, et al. Applications of diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, part 1: TODGA. Solvent Extr Ion Exc 2018; 36: 223-256. [Article] [CrossRef] [Google Scholar]
  • Peroutka AA, Galley SS, Shafer JC. Elucidating the speciation of extracted lanthanides by diglycolamides. Coord Chem Rev 2023; 482: 215071. [Article] [Google Scholar]
  • Li L, Hu X, Wang Z, et al. Structure-activity relationship approach toward the improved separation of actinides(III) over lanthanides(III) using amine-triamide ligands. Sep Purif Technol 2024; 330: 125545. [Article] [Google Scholar]
  • Wang Z, Li F, Wang X, et al. Demonstration of a continuous counter-current extraction process based on a non-heterocyclic N-donor ligand NTAamide(n-Oct) for trivalent actinides/lanthanides separation. Sep Purif Technol 2021; 261: 118285. [Article] [CrossRef] [Google Scholar]
  • Heitzmann M, Bravard F, Gateau C, et al. Comparison of two tetrapodal N,O ligands: Impact of the softness of the heterocyclic N-donors pyridine and pyrazine on the selectivity for Am(III) over Eu(III). Inorg Chem 2009; 48: 246-256. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Heitzmann M, Gateau C, Chareyre L, et al. Water-soluble tetrapodal N,O ligands incorporating soft N-heterocycles for the selective complexation of Am(III) over Ln(III). New J Chem 2010; 34: 108-116. [Article] [CrossRef] [Google Scholar]
  • Heathman CR, Grimes TS, Jansone-Popova S, et al. Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine-N,N′,N′′,N′′-tetraacetic acid. Dalton Trans 2018; 47: 1092-1105. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Grimes TS, Heathman CR, Jansone-Popova S, et al. Influence of a heterocyclic nitrogen-donor group on the coordination of trivalent actinides and lanthanides by aminopolycarboxylate complexants. Inorg Chem 2018; 57: 1373-1385. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Grimes TS, Heathman CR, Jansone-Popova S, et al. Exploring soft donor character of the N-2-pyrazinylmethyl group by coordinating trivalent actinides and lanthanides using aminopolycarboxylates. Inorg Chem 2020; 59: 138-150. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Pilgrim CD, Grimes TS, Smith C, et al. Tuning aminopolycarboxylate chelators for efficient complexation of trivalent actinides. Sci Rep 2023; 13: 17855. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Gorden AEV, Xu J, Raymond KN, et al. Rational design of sequestering agents for plutonium and other actinides. Chem Rev 2003; 103: 4207-4282. [Article] [Google Scholar]
  • Durbin PW, Lauriston S. Taylor Lecture: The quest for therapeutic actinide chelators. Health Phys 2008; 95: 465-492 [Google Scholar]
  • Deblonde GJP, Sturzbecher-Hoehne M, Abergel RJ. Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO): A critical feature for efficient chelation of lanthanide(IV) and actinide(IV) ions. Inorg Chem 2013; 52: 8805-8811. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Captain I, Deblonde GJP, Rupert PB, et al. Engineered recognition of tetravalent zirconium and thorium by chelator–protein systems: Toward flexible radiotherapy and imaging platforms. Inorg Chem 2016; 55: 11930-11936. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Durbin PW, Kullgren B, Xu J, et al. Multidentate hydroxypyridinonate ligands for Pu(IV) chelation in vivo :Comparative efficacy and toxicity in mouse of ligands containing 1,2-HOPO or Me-3,2-HOPO. Int J Radiat Biol 2000; 76: 199-214. [Article] [Google Scholar]
  • Deblonde GJP, Sturzbecher-Hoehne M, Rupert PB, et al. Chelation and stabilization of berkelium in oxidation state +IV. Nat Chem 2017; 9: 843-849. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Carter KP, Shield KM, Smith KF, et al. Structural and spectroscopic characterization of an einsteinium complex. Nature 2021; 590: 85-88. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Deblonde GJP, Abergel RJ. Hydroxypyridinone derivatives: A low-pH alternative to polyaminocarboxylates for TALSPEAK-like separation of trivalent actinides from lanthanides. ACS Omega 2020; 5: 12996-13005. [Article] [Google Scholar]
  • Ruff CM, Müllich U, Geist A, et al. Complexation of Cm(III) and Eu(III) with a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine studied by time-resolved laser fluorescence spectroscopy. Dalton Trans 2012; 41: 14594. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wagner C, Müllich U, Geist A, et al. Selective extraction of Am(III) from PUREX raffinate: The AmSel system. Solvent Extr Ion Exc 2016; 34: 103-113. [Article] [Google Scholar]
  • Kaufholz P, Modolo G, Wilden A, et al. Solvent extraction and fluorescence spectroscopic investigation of the selective Am(III) complexation with TS-BTPhen. Solvent Extr Ion Exc 2016; 34: 126-140. [Article] [Google Scholar]
  • Healy MR, Ivanov AS, Karslyan Y, et al. Efficient separation of light lanthanides(III) by using bis‐lactam phenanthroline ligands. Chem Eur J 2019; 25: 6326-6331. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Johnson KR, Driscoll DM, Damron JT, et al. Size selective ligand tug of war strategy to separate rare earth elements. JACS Au 2023; 3: 584-591. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Izatt RM, Bradshaw JS, Nielsen SA, et al. Thermodynamic and kinetic data for cation-macrocycle interaction. Chem Rev 1985; 85: 271-339. [Article] [CrossRef] [Google Scholar]
  • Lehn JM. Supramolecular chemistry: Receptors, catalysts, and carriers. Science 1985; 227: 849-856. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chang CA, Rowland ME. Metal complex formation with 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N′-diacetic acid. An approach to potential lanthanide ion selective reagents. Inorg Chem 1983; 22: 3866-3869. [Article] [CrossRef] [Google Scholar]
  • Chang CA, Ochaya VO. Potential lanthanide ion selective reagents. 3. Metal complex formation with 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N′-diacetic acid. Inorg Chem 1986; 25: 355-358. [Article] [CrossRef] [Google Scholar]
  • Chang CA, Chang PHL, Manchanda VK, et al. Equilibria and dissociation kinetics of lanthanide complexes of diaza crown ether carboxylic acids. Inorg Chem 1988; 27: 3786-3789. [Article] [CrossRef] [Google Scholar]
  • Brown PR, Izatt RM, Christensen JJ, et al. Transport of Eu2+ in a H2O CHCl3 H2O liquid membrane system containing the macrocyclic polyether 18-crown-6. J Membr Sci 1983; 13: 85-88. [Article] [Google Scholar]
  • Zhu CY, Izatt RM. Macrocycle-mediated separation of Eu2+ from trivalent lanthanide cations in a modified thin-sheet-supported liquid membrane system. J Membr Sci 1990; 50: 319-324. [Article] [CrossRef] [Google Scholar]
  • Petoud S, Cohen SM, Bünzli JCG, et al. Stable lanthanide luminescence agents highly emissive in aqueous solution: Multidentate 2-hydroxyisophthalamide complexes of Sm3+, Eu3+, Tb3+, Dy3+. J Am Chem Soc 2003; 125: 13324-13325. [Article] [Google Scholar]
  • Seitz M, Moore EG, Ingram AJ, et al. Enantiopure, octadentate ligands as sensitizers for europium and terbium circularly polarized luminescence in aqueous solution. J Am Chem Soc 2007; 129: 15468-15470. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Xu J, Corneillie TM, Moore EG, et al. Octadentate cages of Tb(III) 2-hydroxyisophthalamides: A new standard for luminescent lanthanide labels. J Am Chem Soc 2011; 133: 19900-19910. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Doffek C, Seitz M. The radiative lifetime in near-IR-luminescent ytterbium cryptates: The key to extremely high quantum yields. Angew Chem Int Ed 2015; 54: 9719-9721. [Article] [Google Scholar]
  • Li XZ, Tian CB, Sun QF. Coordination-directed self-assembly of functional polynuclear lanthanide supramolecular architectures. Chem Rev 2022; 122: 6374-6458. [Article] [Google Scholar]
  • Rodríguez-Rodríguez A, Esteban-Gómez D, Tripier R, et al. Lanthanide(III) complexes with a reinforced cyclam ligand show unprecedented kinetic inertness. J Am Chem Soc 2014; 136: 17954-17957. [Article] [Google Scholar]
  • Tircsó G, Regueiro‐Figueroa M, Nagy V, et al. Approaching the kinetic inertness of macrocyclic gadolinium(III)-based MRI contrast agents with highly rigid open‐chain derivatives. Chem Eur J 2016; 22: 896-901. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Le Fur M, Molnár E, Beyler M, et al. Expanding the family of pyclen-based ligands bearing pendant picolinate arms for lanthanide complexation. Inorg Chem 2018; 57: 6932-6945. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hamon N, Roux A, Beyler M, et al. Pyclen-based Ln(III) complexes as highly luminescent bioprobes for in vitro and in vivo one- and two-photon bioimaging applications. J Am Chem Soc 2020; 142: 10184-10197. [Article] [Google Scholar]
  • Nizou G, Molnár E, Hamon N, et al. Pyclen-based ligands bearing pendant picolinate arms for gadolinium complexation. Inorg Chem 2021; 60: 2390-2405. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Marlin A, Koller A, Madarasi E, et al. H3nota derivatives possessing picolyl and picolinate pendants for Ga3+ coordination and 67Ga3+ radiolabeling. Inorg Chem 2023; 62: 20634-20645. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Baranyai Z, Tircsó G, Rösch F. The use of the macrocyclic chelator DOTA in radiochemical separations. Eur J Inorg Chem 2020; 2020: 36-56. [Article] [Google Scholar]
  • Roca-Sabio A, Mato-Iglesias M, Esteban-Gómez D, et al. Macrocyclic receptor exhibiting unprecedented selectivity for light lanthanides. J Am Chem Soc 2009; 131: 3331-3341. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hu A, MacMillan SN, Wilson JJ. Macrocyclic ligands with an unprecedented size-selectivity pattern for the lanthanide ions. J Am Chem Soc 2020; 142: 13500-13506. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hu A, Aluicio-Sarduy E, Brown V, et al. Py-macrodipa: A Janus chelator capable of binding medicinally relevant rare-earth radiometals of disparate sizes. J Am Chem Soc 2021; 143: 10429-10440. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Choppin GR, Nash KL. Actinide separation science. Radiochim Acta 1995; 70-71: 225-236. [Article] [CrossRef] [Google Scholar]
  • Mathur JN, Murali MS, Nash KL. Actinide partitioning—A review. Solvent Extr Ion Exc 2001; 19: 357-390. [Article] [Google Scholar]
  • Jones MB, Gaunt AJ. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem Rev 2013; 113: 1137-1198. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Veliscek-Carolan J. Separation of actinides from spent nuclear fuel: A review. J Hazard Mater 2016; 318: 266-281. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Werner EJ, Biros SM. Supramolecular ligands for the extraction of lanthanide and actinide ions. Org Chem Front 2019; 6: 2067-2094. [Article] [Google Scholar]
  • Taylor R, Mathers G, Banford A. The development of future options for aqueous recycling of spent nuclear fuels. Prog Nucl Energy 2023; 164: 104837. [Article] [Google Scholar]
  • Seitz M, Oliver AG, Raymond KN. The lanthanide contraction revisited. J Am Chem Soc 2007; 129: 11153-11160. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cotruvo JA Jr.. The chemistry of lanthanides in biology: Recent discoveries, emerging principles, and technological applications. ACS Cent Sci 2019; 5: 1496-1506. [Article] [Google Scholar]
  • Peters JA, Djanashvili K, Geraldes CFGC, et al. The chemical consequences of the gradual decrease of the ionic radius along the Ln-series. Coord Chem Rev 2020; 406: 213146. [Article] [Google Scholar]
  • Dares CJ, Lapides AM, Mincher BJ, et al. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode. Science 2015; 350: 652-655. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Dong X, Yan Q, Wang Z, et al. Group separation of hexavalent actinides from lanthanides through selective extraction by sterically hindered 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Ind Eng Chem Res 2022; 61: 17175-17182. [Article] [Google Scholar]
  • Wang Z, Dong X, Yan Q, et al. Separation of americium from curium through oxidation state control with record efficiency. Anal Chem 2022; 94: 7743-7746. [Article] [Google Scholar]
  • Wang Z, Lu JB, Dong X, et al. Ultra-efficient americium/lanthanide separation through oxidation state control. J Am Chem Soc 2022; 144: 6383-6389. [Article] [Google Scholar]
  • Wang Z, Huang L, Dong X, et al. Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation. Nat Commun 2023; 14: 261. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang H, Li A, Li K, et al. Ultrafiltration separation of Am(VI)-polyoxometalate from lanthanides. Nature 2023; 616: 482-487. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Dong X, Hao H, Chen J, et al. Redox stabilization of Am(v) in a biphasic extraction system boosts americium/lanthanides separation efficiency. Chem Sci 2024; 15: 2118-2122. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lan JH, Shi WQ, Yuan LY, et al. Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coord Chem Rev 2012; 256: 1406-1417. [Article] [CrossRef] [Google Scholar]
  • Wang S, Wang C, Yang X, et al. Selective separation of Am(III)/Eu(III) by the QL-DAPhen ligand under high acidity: Extraction, spectroscopy, and theoretical calculations. Inorg Chem 2021; 60: 19110-19119. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Fang D, Yang X, Li J, et al. Preorganization effects on Eu(III) ion coordination by dipyridyl-phenanthroline ligands: A combined experimental and theoretical analysis. Inorg Chem 2024; 63: 8171-8179. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu F, Xiu TY, Shehzad H, et al. Selective separation of U(VI) from Pu(IV) by 2,9-diamide-1,10-phenanthroline ligands at high acidity: Extraction and coordination chemistry. Inorg Chem 2024; 63: 3859-3869. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Scaravaggi S, Macerata E, Galletta M, et al. Hydrophilic 1,10-phenanthroline derivatives for selective Am(III) stripping into aqueous solutions. J Radioanal Nucl Chem 2014; 303: 1811-1820. [Article] [Google Scholar]
  • Wu Q, Hao H, Liu Y, et al. Selective separation of americium(III), curium(III), and lanthanide(III) by aqueous and organic competitive extraction. Inorg Chem 2024; 63: 462-473. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Kang Y, Li H, Bao M, et al. A step forward in unraveling the lanthanide discrimination puzzle: Structure–selectivity relationship based on phenanthroline diimide ligands towards europium and terbium detection in water. J Mater Chem C 2024; 12: 6056-6063. [Article] [Google Scholar]
  • Clarke RW, Sandmeier T, Franklin KA, et al. Dynamic crosslinking compatibilizes immiscible mixed plastics. Nature 2023; 616: 731-739. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Mangel DN, Juarez GJ, Carpenter SH, et al. Deferasirox derivatives: Ligands for the lanthanide series. J Am Chem Soc 2023; 145: 22206-22212. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Fasting C, Schalley CA, Weber M, et al. Multivalency as a chemical organization and action principle. Angew Chem Int Ed 2012; 51: 10472-10498. [Article] [Google Scholar]
  • Ni XL, Xue SF, Tao Z, et al. Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils. Coord Chem Rev 2015; 287: 89-113. [Article] [Google Scholar]
  • Chen L, Wang S. Multivalent cooperativity induced by self-assembly for f-element separation. Commun Chem 2021; 4: 78. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li XZ, Zhou LP, Yan LL, et al. A supramolecular lanthanide separation approach based on multivalent cooperative enhancement of metal ion selectivity. Nat Commun 2018; 9: 547. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Mei L, Ren P, Wu Q, et al. Actinide separation inspired by self-assembled metal–polyphenolic nanocages. J Am Chem Soc 2020; 142: 16538-16545. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Song Y, Zhu C, Sun Q, et al. Nanospace decoration with uranyl-specific “hooks” for selective uranium extraction from seawater with ultrahigh enrichment index. ACS Cent Sci 2021; 7: 1650-1656. [Article] [Google Scholar]
  • Qian J, Berkland C. Conformational stability effect of polymeric iron chelators. iScience 2019; 21: 124-134. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Abergel RJ, Moore EG, Strong RK, et al. Microbial evasion of the immune system: Structural modifications of enterobactin impair siderocalin recognition. J Am Chem Soc 2006; 128: 10998-10999. [Article] [Google Scholar]
  • Abergel RJ, Zawadzka AM, Raymond KN. Petrobactin-mediated iron transport in pathogenic bacteria: Coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J Am Chem Soc 2008; 130: 2124-2125. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Bhula R, Osvath P, Weatherburn DC. Complexes of tridentate and pentadentate macrocyclic ligands. Coord Chem Rev 1988; 91: 89-213. [Article] [Google Scholar]
  • Kremer C, Torres J, Dominguez S, et al. Structure and thermodynamic stability of lanthanide complexes with amino acids and peptides. Coord Chem Rev 2005; 249: 567-590. [Article] [CrossRef] [Google Scholar]
  • Ansoborlo E, Prat O, Moisy P, et al. Actinide speciation in relation to biological processes. Biochimie 2006; 88: 1605-1618. [Article] [Google Scholar]
  • Shimazaki Y, Takani M, Yamauchi O. Metal complexes of amino acids and amino acid side chain groups. Structures and properties. Dalton Trans 2009; : 7854-7869. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ancel L, Niedźwiecka A, Lebrun C, et al. Rational design of lanthanide binding peptides. Comptes Rendus Chimie 2013; 16: 515-523. [Article] [CrossRef] [Google Scholar]
  • Martinez-Gomez NC, Vu HN, Skovran E. Lanthanide chemistry: From coordination in chemical complexes shaping our technology to coordination in enzymes shaping bacterial metabolism. Inorg Chem 2016; 55: 10083-10089. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Daumann LJ. Essential and ubiquitous: The emergence of lanthanide metallobiochemistry. Angew Chem Int Ed 2019; 58: 12795-12802. [Article] [Google Scholar]
  • Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 2020; 49: 8315-8334. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Allred BE, Rupert PB, Gauny SS, et al. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc Natl Acad Sci USA 2015; 112: 10342-10347. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Deblonde GJP, Ricano A, Abergel RJ. Ultra-selective ligand-driven separation of strategic actinides. Nat Commun 2019; 10: 2438. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ricano A, Captain I, Carter KP, et al. Combinatorial design of multimeric chelating peptoids for selective metal coordination. Chem Sci 2019; 10: 6834-6843. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Bailey TA, Mocko V, Shield KM, et al. Developing the 134Ce and 134La pair as companion positron emission tomography diagnostic isotopes for 225Ac and 227Th radiotherapeutics. Nat Chem 2021; 13: 284-289. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mattocks JA, Jung JJ, Lin CY, et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 2023; 618: 87-93. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cotruvo JA Jr., Featherston ER, Mattocks JA, et al. Lanmodulin: A highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J Am Chem Soc 2018; 140: 15056-15061. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Deblonde GJP, Mattocks JA, Park DM, et al. Selective and efficient biomacromolecular extraction of rare-earth elements using lanmodulin. Inorg Chem 2020; 59: 11855-11867. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mattocks JA, Cotruvo JA, Deblonde GJP. Engineering lanmodulin’s selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem Sci 2022; 13: 6054-6066. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Deblonde GJP, Mattocks JA, Wang H, et al. Characterization of americium and curium complexes with the protein lanmodulin: A potential macromolecular mechanism for actinide mobility in the environment. J Am Chem Soc 2021; 143: 15769-15783. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Deblonde GJP, Mattocks JA, Dong Z, et al. Capturing an elusive but critical element: Natural protein enables actinium chemistry. Sci Adv 2021; 7: eabk0273. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Singer H, Drobot B, Zeymer C, et al. Americium preferred: Lanmodulin, a natural lanthanide-binding protein favors an actinide over lanthanides. Chem Sci 2021; 12: 15581-15587. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mattocks JA, Ho JV, Cotruvo JA Jr.. A selective, protein-based fluorescent sensor with picomolar affinity for rare earth elements. J Am Chem Soc 2019; 141: 2857-2861. [Article] [Google Scholar]
  • Hussain Z, Kim S, Cho J, et al. Repeated recovery of rare earth elements using a highly selective and thermo‐responsive genetically encoded polypeptide. Adv Funct Mater 2022; 32: 2109158. [Article] [CrossRef] [Google Scholar]
  • Dong Z, Mattocks JA, Deblonde GJP, et al. Bridging hydrometallurgy and biochemistry: A protein-based process for recovery and separation of rare earth elements. ACS Cent Sci 2021; 7: 1798-1808. [Article] [Google Scholar]
  • Li Y, Zheng Y, Ahamd Z, et al. Strategies for designing highly efficient adsorbents to capture uranium from seawater. Coord Chem Rev 2023; 491: 215234. [Article] [CrossRef] [Google Scholar]
  • Xie Y, Liu Z, Geng Y, et al. Uranium extraction from seawater: Material design, emerging technologies and marine engineering. Chem Soc Rev 2023; 52: 97-162. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yuan Y, Yu Q, Cao M, et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat Sustain 2021; 4: 708-714. [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.