Open Access
Issue |
Natl Sci Open
Volume 4, Number 2, 2025
|
|
---|---|---|
Article Number | 20240043 | |
Number of page(s) | 14 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20240043 | |
Published online | 09 January 2025 |
- Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys 1985; 57: 783-826. [Article] [Google Scholar]
- Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997; 275: 1102-1106. [Article] [CrossRef] [Google Scholar]
- Camden JP, Dieringer JA, Wang Y, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 2008; 130: 12616-12617. [Article] [Google Scholar]
- Li JF, Huang YF, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010; 464: 392-395. [Article] [Google Scholar]
- Matricardi C, Hanske C, Garcia-Pomar JL, et al. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 2018; 12: 8531-8539. [Article] [Google Scholar]
- Schlücker S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew Chem Int Ed 2014; 53: 4756-4795. [Article] [Google Scholar]
- Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 1974; 26: 163-166. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007; 6: 183-191. [Article] [CrossRef] [Google Scholar]
- Wang H, Yuan H, Sae Hong S, et al. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 2015; 44: 2664-2680. [Article] [CrossRef] [PubMed] [Google Scholar]
- Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science 2016; 353: aac9439. [Article] [Google Scholar]
- Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv Mater 2015; 27: 7261-7284. [Article] [NASA ADS] [PubMed] [Google Scholar]
- Wu L, Lin H, Cao X, et al. Bioorthogonal Cu single-atom nanozyme for synergistic nanocatalytic therapy, photothermal therapy, cuproptosis and immunotherapy. Angew Chem Int Ed 2024; 63: e202405937. [Article] [Google Scholar]
- Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun 2014; 5: 5678. [Article] [Google Scholar]
- Ren H, Xia X, Sun Y, et al. Electrolyte engineering for the mass exfoliation of graphene oxide across wide oxidation degrees. J Mater Chem A 2024; 12: 23416-23424. [Article] [Google Scholar]
- Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced Raman spectroscopy. Small 2013; 9: 1206-1224. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ling X, Fang W, Lee YH, et al. Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2. Nano Lett 2014; 14: 3033-3040. [Article] [Google Scholar]
- Ling X, Huang S, Deng S, et al. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res 2015; 48: 1862-1870. [Article] [Google Scholar]
- Li J, Song P, Zhao J, et al. Printable two-dimensional superconducting monolayers. Nat Mater 2021; 20: 181-187. [Article] [Google Scholar]
- Zhao B, Shen D, Zhang Z, et al. 2D metallic transition-metal dichalcogenides: Structures, synthesis, properties, and applications. Adv Funct Mater 2021; 31: 2105132. [Article] [Google Scholar]
- Demirel G, Usta H, Yilmaz M, et al. Surface-enhanced Raman spectroscopy (SERS): An adventure from plasmonic metals to organic semiconductors as SERS platforms. J Mater Chem C 2018; 6: 5314-5335. [Article] [Google Scholar]
- Han XX, Ji W, Zhao B, et al. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017; 9: 4847-4861. [Article] [Google Scholar]
- Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature 2018; 556: 355-359. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ding SY, Yi J, Li JF, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 2016; 1: 16021. [Article] [Google Scholar]
- Tian ZQ, Ren B, Wu DY. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 2002; 106: 9463-9483. [Article] [Google Scholar]
- Zhang L, Fang M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today 2010; 5: 128-142. [Article] [Google Scholar]
- Chen Z, Wu C, Yuan Y, et al. CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. J Nanobiotechnol 2023; 21: 141. [Article] [CrossRef] [Google Scholar]
- Liu D, Chen X, Hu Y, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun 2018; 9: 193-202. [Article] [Google Scholar]
- Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photon 2014; 8: 899-907. [Article] [Google Scholar]
- Lin H, Zhu Q, Shu D, et al. Growth of environmentally stable transition metal selenide films. Nat Mater 2019; 18: 602-607. [Article] [Google Scholar]
- Tao L, Chen K, Chen Z, et al. 1T′ transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels. J Am Chem Soc 2018; 140: 8696-8704. [Article] [Google Scholar]
- Song X, Wang Y, Zhao F, et al. Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials. ACS Nano 2019; 13: 8312-8319. [Article] [Google Scholar]
- Lv Q, Wu X, Tan J, et al. Ultrasensitive molecular sensing of few-layer niobium diselenide. J Mater Chem A 2021; 9: 2725-2733. [Article] [Google Scholar]
- Ge Y, Wang F, Yang Y, et al. Atomically thin TaSe2 film as a high-performance substrate for surface-enhanced Raman scattering. Small 2022; 18: 2107027. [Article] [PubMed] [Google Scholar]
- Martincová J, Otyepka M, Lazar P. Is single layer MoS2 stable in the air?. Chem Eur J 2017; 23: 13233-13239. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rhodes D, Chae SH, Ribeiro-Palau R, et al. Disorder in van der Waals heterostructures of 2D materials. Nat Mater 2019; 18: 541-549. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li Q, Zhou Q, Shi L, et al. Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J Mater Chem A 2019; 7: 4291-4312. [Article] [Google Scholar]
- Yu W, Li J, Herng TS, et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv Mater 2019; 31: 1903779. [Article] [Google Scholar]
- Ling X, Xie L, Fang Y, et al. Can graphene be used as a substrate for Raman enhancement?. Nano Lett 2010; 10: 553-561. [Article] [Google Scholar]
- Cheng H, Zhao Y, Fan Y, et al. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano 2012; 6: 2237-2244. [Article] [Google Scholar]
- Liang C, Sun Q, Al-Salihy A, et al. Recent advances in crystal phase induced surface-enhanced Raman scattering. Chin Chem Lett 2024; 35: 109306. [Article] [CrossRef] [Google Scholar]
- Liang C, Lu ZA, Zheng M, et al. Band structure engineering within two-dimensional borocarbonitride nanosheets for surface-enhanced Raman scattering. Nano Lett 2022; 22: 6590-6598. [Article] [Google Scholar]
- Lin H, Chang M, Fu X, et al. Tunability of the superconductivity of NbSe2 films grown by two-step vapor deposition. Molecules 2023; 28: 1059. [Article] [PubMed] [Google Scholar]
- Wang H, Huang X, Lin J, et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat Commun 2017; 8: 394. [Article] [Google Scholar]
- Saito R, Tatsumi Y, Huang S, et al. Raman spectroscopy of transition metal dichalcogenides. J Phys-Condens Matter 2016; 28: 353002. [Article] [Google Scholar]
- Staley NE, Wu J, Eklund P, et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Phys Rev B 2009; 80: 184505. [Article] [Google Scholar]
- Duan X, Wang C, Shaw JC, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotech 2014; 9: 1024-1030. [Article] [Google Scholar]
- Xi X, Zhao L, Wang Z, et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat Nanotech 2015; 10: 765-769. [Article] [Google Scholar]
- Yazyev OV, Chen YP. Polycrystalline graphene and other two-dimensional materials. Nat Nanotech 2014; 9: 755-767. [Article] [Google Scholar]
- Thrall ES, Crowther AC, Yu Z, et al. R6G on graphene: High Raman detection sensitivity, yet decreased Raman cross-section. Nano Lett 2012; 12: 1571-1577. [Article] [Google Scholar]
- Yang B, Xu H, Lu J, et al. Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film. J Am Chem Soc 2014; 136: 12041-12046. [Article] [Google Scholar]
- Huang PY, Ruiz-Vargas CS, van der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011; 469: 389-392. [Article] [Google Scholar]
- Zhao T, Xu C, Ma W, et al. Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nat Commun 2019; 10: 4854. [Article] [Google Scholar]
- Calandra M, Mazin II, Mauri F. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2. Phys Rev B 2009; 80: 241108. [Article] [Google Scholar]
- Wang Z, Su Q, Yin GQ, et al. Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries. Mater Chem Phys 2014; 147: 1068-1073. [Article] [Google Scholar]
- Malliakas CD, Kanatzidis MG. Nb-Nb interactions define the charge density wave structure of 2H-NbSe2. J Am Chem Soc 2013; 135: 1719-1722. [Article] [Google Scholar]
- Burke K. Perspective on density functional theory. J Chem Phys 2012; 136: 150901. [Article] [CrossRef] [PubMed] [Google Scholar]
- Soundiraraju B, George BK. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 2017; 11: 8892-8900. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.