Issue |
Natl Sci Open
Volume 4, Number 3, 2025
Special Topic: Thermoelectric Materials and Devices
|
|
---|---|---|
Article Number | 20250001 | |
Number of page(s) | 16 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20250001 | |
Published online | 11 March 2025 |
- Chua LL, Zaumseil J, Chang JF, et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005; 434: 194-199. [Article] [Google Scholar]
- Zaumseil J, Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors. Chem Rev 2007; 107: 1296-1323. [Article] [Google Scholar]
- Wang SJ, Sawatzki M, Darbandy G, et al. Organic bipolar transistors. Nature 2022; 606: 700-705. [Article] [Google Scholar]
- Shi K, Zhang W, Gao D, et al. Well‐balanced ambipolar conjugated polymers featuring mild glass transition temperatures toward high-performance flexible field-effect transistors. Adv Mater 2018; 30: 1705286. [Article] [CrossRef] [Google Scholar]
- Morana M, Wegscheider M, Bonanni A, et al. Bipolar charge transport in PCPDTBT‐PCBM bulk-heterojunctions for photovoltaic applications. Adv Funct Mater 2008; 18: 1757-1766. [Article] [Google Scholar]
- Zhu D, Wang P, Wan M, et al. Synthesis, structure and electrical properties of the two-dimensional organic conductor, (BEDT-TTF)2BrI2. Physica B C 1986; 143: 281-284. [Article] [Google Scholar]
- Kaiser AB. Systematic conductivity behavior in conducting polymers: Effects of heterogeneous disorder. Adv Mater 2001; 13: 927-941. [Article] [Google Scholar]
- Liang Z, Choi HH, Luo X, et al. n-Type charge transport in heavily p-doped polymers. Nat Mater 2021; 20: 518-524. [Article] [Google Scholar]
- Liu J, Ye G, Zee B, et al. n‐Type organic thermoelectrics of donor-acceptor copolymers: Improved power factor by molecular tailoring of the density of states. Adv Mater 2018; 30: 1804290. [Article] [CrossRef] [Google Scholar]
- Wang J, Wang Y, Li Q, et al. p-Type chemical doping-induced high bipolar electrical conductivities in a thermoelectric donor-acceptor copolymer. CCS Chem 2021; 3: 2482-2493. [Article] [Google Scholar]
- Hwang S, Potscavage WJ, Yang YS, et al. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity. Phys Chem Chem Phys 2016; 18: 29199-29207. [Article] [Google Scholar]
- Kang SD, Snyder GJ. Charge-transport model for conducting polymers. Nat Mater 2017; 16: 252-257. [Article] [Google Scholar]
- Russ B, Glaudell A, Urban JJ, et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 2016; 1: 16050. [Article] [CrossRef] [Google Scholar]
- Ma Y, Di C, Zhu D. Advances in organic thermoelectric devices for multiple applications. Adv Phys Res 2023; 2: 2300027. [Article] [CrossRef] [Google Scholar]
- Zhang S, Liu L, Ma Y, et al. Advances in theoretical calculations of organic thermoelectric materials. Chin Chem Lett 2024; 35: 109749. [Article] [Google Scholar]
- Cohn JL, White BD, Dos Santos CAM, et al. Giant Nernst effect and bipolarity in the quasi-one-dimensional metal Li0.9Mo6O17. Phys Rev Lett 2012; 108: 056604. [Article] arxiv:1201.2154 [CrossRef] [PubMed] [Google Scholar]
- Rana KG, Dejene FK, Kumar N, et al. Thermopower and unconventional nernst effect in the predicted type-II Weyl semimetal WTe2. Nano Lett 2018; 18: 6591-6596. [Article] arxiv:2004.05389 [Google Scholar]
- Pan Y, He B, Helm T, et al. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. Nat Commun 2022; 13: 3909. [Article] [Google Scholar]
- Zhang S, Dai X, Hao W, et al. A first-principles study of the Nernst effect in doped polymer. Chin Chem Lett 2024; 35: 109837. [Article] [Google Scholar]
- Yang Y, Tao Q, Fang Y, et al. Anomalous enhancement of the Nernst effect at the crossover between a Fermi liquid and a strange metal. Nat Phys 2023; 19: 379-385. [Article] [Google Scholar]
- Cyr-Choinière O, Daou R, Laliberté F, et al. Enhancement of the Nernst effect by stripe order in a high-Tc superconductor. Nature 2009; 458: 743-745. [Article] arxiv:0902.4241 [Google Scholar]
- Ma Y, Ren X, Zou Y, et al. Observation of anomalously large Nernst effects in conducting polymers. Nat Commun 2025; 16: 1435. [Article] [Google Scholar]
- Liu Y, Shi W, Zhao T, et al. Boosting the seebeck coefficient for organic coordination polymers: Role of doping-induced polaron band formation. J Phys Chem Lett 2019; 10: 2493-2499. [Article] [Google Scholar]
- Liu R, Ge Y, Wang D, et al. Understanding the temperature dependence of the seebeck coefficient from first-principles band structure calculations for organic thermoelectric materials. CCS Chem 2021; 3: 1477-1483. [Article] [Google Scholar]
- Yamashita Y, Tsurumi J, Ohno M, et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 2019; 572: 634-638. [Article] [Google Scholar]
- Kang K, Watanabe S, Broch K, et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat Mater 2016; 15: 896-902. [Article] [Google Scholar]
- Dai X, Liu L, Ji Z, et al. Surface charge transfer doping of graphene using a strong molecular dopant CN6-CP. Chin Chem Lett 2023; 34: 107239. [Article] [Google Scholar]
- Dai X, Meng Q, Zhang F, et al. Electronic structure engineering in organic thermoelectric materials. J Energy Chem 2021; 62: 204-219. [Article] [Google Scholar]
- Ji Z, Li Z, Dai X, et al. Photoexcitation-assisted molecular doping for high-performance polymeric thermoelectric materials. JACS Au 2024; 4: 3884-3895. [Article] [Google Scholar]
- Zhao W, Ding J, Zou Y, et al. Chemical doping of organic semiconductors for thermoelectric applications. Chem Soc Rev 2020; 49: 7210-7228. [Article] [Google Scholar]
- Eder T, Vogelsang J, Bange S, et al. Interplay between J‐ and H‐type coupling in aggregates of π‐conjugated polymers: A single‐molecule perspective. Angew Chem Int Ed 2019; 58: 18898-18902. [Article] [Google Scholar]
- Schroeder BC, Kurosawa T, Fu T, et al. Taming charge transport in semiconducting polymers with branched alkyl side chains. Adv Funct Mater 2017; 27: 1701973. [Article] [CrossRef] [Google Scholar]
- Spano FC, Silva C. H- and J-aggregate behavior in polymeric semiconductors. Annu Rev Phys Chem 2014; 65: 477-500. [Article] [Google Scholar]
- Tautz R, da Como E, Limmer T, et al. Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics. Nat Commun 2012; 3: 970. [Article] [Google Scholar]
- Rolczynski BS, Szarko JM, Son HJ, et al. Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implications in photovoltaic materials design. J Am Chem Soc 2012; 134: 4142-4152. [Article] [Google Scholar]
- Mansour AE, Valencia AM, Lungwitz D, et al. Understanding the evolution of the Raman spectra of molecularly p-doped poly(3-hexylthiophene-2,5-diyl): Signatures of polarons and bipolarons. Phys Chem Chem Phys 2022; 24: 3109-3118. [Article] [Google Scholar]
- Yang L, Wu Y, Yan Y, et al. Molecular packing and charge transport behaviors of semiconducting polymers over a wide temperature range. Adv Funct Mater 2022; 32: 2202456. [Article] [CrossRef] [Google Scholar]
- Roy P, Jha A, Yasarapudi VB, et al. Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer. Nat Commun 2017; 8: 1716. [Article] [Google Scholar]
- Liu J, Shi Y, Dong J, et al. Overcoming Coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett 2019; 4: 1556-1564. [Article] [Google Scholar]
- Koopmans M, Koster LJA. Carrier-carrier Coulomb interactions reduce power factor in organic thermoelectrics. Appl Phys Lett 2021; 119: 143301. [Article] [CrossRef] [Google Scholar]
- Wang D, Ding J, Ma Y, et al. Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 2024; 632: 528-535. [Article] [Google Scholar]
- Zhao Y, Li Z, Wang D, et al. High performance and colorful polymer thermoelectrics with imprinted porous film. Adv Mater 2024; 36: 2407692. [Article] [CrossRef] [Google Scholar]
- Wang D, Ding J, Dai X, et al. Triggering ZT to 0.40 by engineering orientation in one polymeric semiconductor. Adv Mater 2023; 35: 2208215. [Article] [CrossRef] [Google Scholar]
- Liu J, van der Zee B, Alessandri R, et al. n-Type organic thermoelectrics: Demonstration of ZT > 0.3. Nat Commun 2020; 11: 5694. [Article] [Google Scholar]
- Huang D, Yao H, Cui Y, et al. Conjugated-backbone effect of organic small molecules for n-type thermoelectric materials with ZT over 0.2. J Am Chem Soc 2017; 139: 13013-13023. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun Y, Sheng P, Di C, et al. Organic thermoelectric materials and devices based on p‐ and n‐type poly(metal 1,1,2,2‐ethenetetrathiolate)s. Adv Mater 2012; 24: 932-937. [Article] [Google Scholar]
- Sun Y, Qiu L, Tang L, et al. Flexible n‐type high-performance thermoelectric thin films of poly(nickel‐ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater 2016; 28: 3351-3358. [Article] [Google Scholar]
- Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 2011; 10: 429-433. [Article] [Google Scholar]
- Ji Z, Li Z, Liu L, et al. Organic thermoelectric devices for energy harvesting and sensing applications. Adv Mater Tech 2024; 9: 2302128. [Article] [CrossRef] [Google Scholar]
- He Z, Shen H, Ye D, et al. An organic transistor with light intensity-dependent active photoadaptation. Nat Electron 2021; 4: 522-529. [Article] [Google Scholar]
- Linseis V, Völklein F, Reith H, et al. Advanced platform for the in-plane ZT measurement of thin films. Rev Sci Instrum 2018; 89: 015110. [Article] [CrossRef] [Google Scholar]
- Linseis V, Völklein F, Reith H, et al. Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K. J Mater Res 2016; 31: 3196-3204. [Article] [Google Scholar]
- Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A. 01. Wallingford: Gaussian, Inc., 2009 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.