Issue
Natl Sci Open
Volume 1, Number 2, 2022
Special Topic: Emerging Pollution and Emerging Pollutants
Article Number 20220013
Number of page(s) 13
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20220013
Published online 26 April 2022
  • Finlayson-Pitts BJ, Pitts JN. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications. Calif: Academic Press, 2000. [Google Scholar]
  • Rohrer F, Berresheim H Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation.Nature 2006; 442: 184-187. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Edwards PM, Brown SS, Roberts JM, et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin.Nature 2014; 514: 351-354. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Schnell RC, Oltmans SJ, Neely RR, et al. Rapid photochemical production of ozone at high concentrations in a rural site during winter.Nat Geosci 2009; 2: 120-122. [NASA ADS] [CrossRef] [Google Scholar]
  • Lu K, Fuchs H, Hofzumahaus A, et al. Fast photochemistry in wintertime haze: Consequences for pollution mitigation strategies.Environ Sci Technol 2019; 53: 10676-10684. [CrossRef] [PubMed] [Google Scholar]
  • Womack CC, McDuffie EE, Edwards PM, et al. An odd oxygen framework for wintertime ammonium nitrate aerosol pollution in urban areas: NO and VOC control as mitigation strategies.Geophys Res Lett 2019; 46: 4971-4979. [NASA ADS] [CrossRef] [Google Scholar]
  • Feng T, Zhao S, Zhang X, et al. Increasing wintertime ozone levels and secondary aerosol formation in the Guanzhong basin, central China.Sci Total Environ 2020; 745: 140961. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li K, Jacob DJ, Liao H, et al. Ozone pollution in the North China Plain spreading into the late-winter haze season.Proc Natl Acad Sci USA 2021; 118: 2015797118. [CrossRef] [Google Scholar]
  • Ren X, Brune WH, Mao J, et al. Behavior of OH and HO in the winter atmosphere in New York City.Atmos Environ 2006; 40: 252-263. [NASA ADS] [CrossRef] [Google Scholar]
  • Kanaya Y, Cao R, Akimoto H, et al. Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO radical concentrations during the winter and summer of 2004.J Geophys Res 2007; 112: D21312. [CrossRef] [Google Scholar]
  • Ma X, Tan Z, Lu K, et al. Winter photochemistry in Beijing: Observation and model simulation of OH and HO radicals at an urban site.Sci Total Environ 2019; 685: 85-95. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Tan Z, Rohrer F, Lu K, et al. Wintertime photochemistry in Beijing: Observations of RO radical concentrations in the North China Plain during the BEST-ONE campaign.Atmos Chem Phys 2018; 18: 12391-12411. [NASA ADS] [CrossRef] [Google Scholar]
  • Rappenglück B, Ackermann L, Alvarez S, Strong wintertime ozone events in the Upper Green River basin, Wyoming. Atmos Chem Phys 2014; 14: 4909–4934. [CrossRef] [Google Scholar]
  • Harrison RM, Yin J, Tilling RM, et al. Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: Overview of the PUMA Consortium project.Sci Total Environ 2006; 360: 5-25. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Heard DE, Carpenter LJ, Creasey DJ, et al. High levels of the hydroxyl radical in the winter urban troposphere.Geophys Res Lett 2004; 31: L18112. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang H, Chen X, Lu K, et al. NO and NO chemistry at a suburban site during the EXPLORE-YRD campaign in 2018.Atmos Environ 2020; 224: 117180. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu SC, Trainer M, Fehsenfeld FC, et al. Ozone production in the rural troposphere and the implications for regional and global ozone distributions.J Geophys Res 1987; 92: 4191-4207. [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang YH, Su H, Zhong LJ, et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign.Atmos Environ 2008; 42: 6203-6218. [NASA ADS] [CrossRef] [Google Scholar]
  • Gaudel A, Cooper OR, Ancellet G, et al. Tropospheric ozone assessment report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem Sci Anth 2018; 6: 39. [CrossRef] [Google Scholar]
  • Murphy J, Day D, Cleary P, et al. The weekend effect within and downwind of Sacramento: Part 2. Observational evidence for chemical and dynamical contributions. Atmos Chem Phys Discuss 2006; 6, doi: 10.5194/acpd-6-11971- 2006. [Google Scholar]
  • Ehlers C, Klemp D, Rohrer F, et al. Twenty years of ambient observations of nitrogen oxides and specified hydrocarbons in air masses dominated by traffic emissions in Germany.Faraday Discuss 2016; 189: 407-437. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Pusede SE, Steiner AL, Cohen RC Temperature and recent trends in the chemistry of continental surface ozone.Chem Rev 2015; 115: 3898-3918. [CrossRef] [PubMed] [Google Scholar]
  • Tan Z, Lu K, Dong H, et al. Explicit diagnosis of the local ozone production rate and the ozone-NO-VOC sensitivities.Sci Bull 2018; 63: 1067-1076. [CrossRef] [Google Scholar]
  • Tan Z, Fuchs H, Lu K, et al. Radical chemistry at a rural site (Wangdu) in the North China Plain: Observation and model calculations of OH, HO and RO radicals.Atmos Chem Phys 2017; 17: 663-690. [NASA ADS] [CrossRef] [Google Scholar]
  • Hofzumahaus A, Rohrer F, Lu K, et al. Amplified trace gas removal in the troposphere.Science 2009; 324: 1702-1704. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Brune WH, Baier BC, Thomas J, et al. Ozone production chemistry in the presence of urban plumes.Faraday Discuss 2016; 189: 169-189. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Canonaco F, Slowik JG, Baltensperger U, et al. Seasonal differences in oxygenated organic aerosol composition: Implications for emissions sources and factor analysis.Atmos Chem Phys 2015; 15: 6993-7002. [NASA ADS] [CrossRef] [Google Scholar]
  • Kondo Y, Morino Y, Fukuda M, et al. Formation and transport of oxidized reactive nitrogen, ozone, and secondary organic aerosol in Tokyo.J Geophys Res 2008; 113: D21310. [CrossRef] [Google Scholar]
  • Su W, Liu C, Hu Q, et al. Primary and secondary sources of ambient formaldehyde in the Yangtze River Delta based on ozone mapping and profiler suite (OMPS) observations.Atmos Chem Phys 2019; 19: 6717-6736. [NASA ADS] [CrossRef] [Google Scholar]
  • Zeng P, Lyu X, Guo H, et al. Spatial variation of sources and photochemistry of formaldehyde in Wuhan, Central China.Atmos Environ 2019; 214: 116826. [NASA ADS] [CrossRef] [Google Scholar]
  • Gall ET, Griffin RJ, Steiner AL, et al. Evaluation of nitrous acid sources and sinks in urban outflow.Atmos Environ 2016; 127: 272-282. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Lu K, Li X, et al. A comprehensive model test of the HONO sources constrained to field measurements at rural North China Plain.Environ Sci Technol 2019; 53: 3517-3525. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Oswald R, Behrendt T, Ermel M, et al. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen.Science 2013; 341: 1233-1235. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Fu X, Wang T, Wang S, et al. Anthropogenic emissions of hydrogen chloride and fine particulate chloride in China.Environ Sci Technol 2018; 52: 1644-1654. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Keene WC, Khalil MAK, Erickson Iii DJ, et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive chlorine emissions inventory.J Geophys Res 1999; 104: 8429-8440. [NASA ADS] [CrossRef] [Google Scholar]
  • Liu Y, Fan Q, Chen X, et al. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China.Atmos Chem Phys 2018; 18: 2709-2724. [NASA ADS] [CrossRef] [Google Scholar]
  • Hong Y, Liu Y, Chen X, et al. The role of anthropogenic chlorine emission in surface ozone formation during different seasons over eastern China.Sci Total Environ 2020; 723: 137697. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Peng X, Wang W, Xia M, et al. An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality.Natl Sci Rev 2021; 8: nwaa304. [CrossRef] [PubMed] [Google Scholar]
  • Tham YJ, Wang Z, Li Q, et al. Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China.Atmos Chem Phys 2016; 16: 14959-14977. [NASA ADS] [CrossRef] [Google Scholar]
  • Wang T, Tham YJ, Xue L, et al. Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China.J Geophys Res Atmos 2016; 121: 2476-2489. [NASA ADS] [CrossRef] [Google Scholar]
  • Li M, Shao M, Li LY, et al. Quantifying the ambient formaldehyde sources utilizing tracers.Chin Chem Lett 2014; 25: 1489-1491. [CrossRef] [Google Scholar]
  • Wolfe GM, Kaiser J, Hanisco TF, et al. Formaldehyde production from isoprene oxidation across NO regimes. Atmos Chem Phys 2016; 16: 2597–2610. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Adon M, Galy-Lacaux C, Delon C, et al. Dry deposition of nitrogen compounds (NO, HNO, NH), sulfur dioxide and ozone in west and central African ecosystems using the inferential method. Atmos Chem Phys 2013; 13: 11351–11374. [NASA ADS] [CrossRef] [Google Scholar]
  • Wesely M, Hicks BB A review of the current status of knowledge on dry deposition.Atmos Environ 2000; 34: 2261-2282. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.