Open Access
Natl Sci Open
Volume 1, Number 3, 2022
Article Number 20220016
Number of page(s) 9
Section Materials Science
Published online 22 June 2022
  • Kroto HW, Heath JR, O’Brien SC, et al. C60: Buckminsterfullerene. Nature 1985; 318: 162-163. [Article] [Google Scholar]
  • Iijima S. Helical microtubules of graphitic carbon. Nature, 1991; 354: 56–58. [Article] [Google Scholar]
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007; 6: 183-191. [Article] [Google Scholar]
  • Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992; 360: 444-446. [Article] [Google Scholar]
  • Chopra NG, Luyken RJ, Cherrey K, et al. Boron nitride nanotubes. Science 1995; 269: 966-967. [Article] [Google Scholar]
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science 2016; 353: aac9439. [Article] [Google Scholar]
  • Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett 2010; 97: 223109. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Mannix AJ, Zhou XF, Kiraly B, et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015; 350: 1513-1516. [Article] [Google Scholar]
  • Naguib M, Mochalin VN, Barsoum MW, et al. 25th Anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater 2014; 26: 992-1005. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Geim AK, Grigorieva IV. van der Waals heterostructures. Nature 2013; 499: 419-425. [Article] [Google Scholar]
  • Xiang R, Inoue T, Zheng Y, et al. One-dimensional van der Waals heterostructures. Science 2020; 367: 537-542. [Article] [Google Scholar]
  • Zheng Y, Kumamoto A, Hisama K, et al. One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proc Natl Acad Sci USA 2021; 118: e2107295118. [Article] [Google Scholar]
  • Cai K, Wan J, Wei N, et al. Thermal stability of a free nanotube from single-layer black phosphorus. Nanotechnology 2016; 27: 235703. [Article] [Google Scholar]
  • Fei R, Li W, Li J, et al. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett 2015; 107: 173104. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang YJ, Ideue T, Onga M, et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 2019; 570: 349-353. [Article] [Google Scholar]
  • Artyukhov VI, Gupta S, Kutana A, et al. Flexoelectricity and charge separation in carbon nanotubes. Nano Lett 2020; 20: 3240-3246. [Article] [Google Scholar]
  • Lu AY, Zhu H, Xiao J, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotech 2017; 12: 744-749. [Article] [Google Scholar]
  • Dong L, Lou J, Shenoy VB. Large in-plane and vertical piezoelectricity in janus transition metal dichalchogenides. ACS Nano 2017; 11: 8242-8248. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang XH, Liu YC, Ren JL, et al. A revised mechanism of band gap evolution of TMDC nanotubes and its application to Janus TMDC nanotubes: Negative electron and hole compressibility. J Mater Chem C 2021; 9: 8920-8929. [Article] [Google Scholar]
  • Zhao B, Wan Z, Liu Y, et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 2021; 591: 385-390. [Article] [Google Scholar]
  • Murakami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 2004; 385: 298-303. [Article] [NASA ADS] [Google Scholar]
  • Zhao X, Zhang X, Liu Q, et al. Growth of single-walled carbon nanotubes on substrates using carbon monoxide as carbon source. Chem Res Chin Univ 2021; 37: 1125-1129. [Article] [Google Scholar]
  • Nasibulin AG, Kaskela A, Mustonen K, et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 2011; 5: 3214-3221. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xiang R, Maruyama S. Heteronanotubes: Challenges and opportunities. Small Sci 2021; 1: 2000039. [Article] [Google Scholar]
  • Guo J, Xiang R, Cheng T, et al. One-dimensional van der Waals heterostructures: A perspective. ACS Nanosci Au 2022; 2: 3–11 [CrossRef] [Google Scholar]
  • Liu M, Hisama K, Zheng Y, et al. Photoluminescence from single-walled MoS2 nanotubes coaxially grown on boron nitride nanotubes. ACS Nano 2021; 15: 8418-8426. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Burdanova MG, Liu M, Staniforth M, et al. Intertube excitonic coupling in nanotube van der Waals heterostructures. Adv Funct Mater 2022; 32: 2104969. [Article] [CrossRef] [Google Scholar]
  • Gogotsi Y, Yakobson BI. Nested hybrid nanotubes. Science 2020; 367: 506-507. [Article] [Google Scholar]
  • Hu C, Michaud-Rioux V, Yao W, et al. Theoretical design of topological heteronanotubes. Nano Lett 2019; 19: 4146-4150. [Article] [Google Scholar]
  • Wang P, Zheng Y, Inoue T, et al. Enhanced in-plane thermal conductance of thin films composed of coaxially combined single-walled carbon nanotubes and boron nitride nanotubes. ACS Nano 2020; 14: 4298-4305. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Burdanova MG, Kashtiban RJ, Zheng Y, et al. Ultrafast optoelectronic processes in 1D radial van der Waals heterostructures: Carbon, boron nitride, and MoS2 nanotubes with coexisting excitons and highly mobile charges. Nano Lett 2020; 20: 3560-3567. [Article] [Google Scholar]
  • Feng Y, Li H, Inoue T, et al. One-dimensional van der Waals heterojunction diode. ACS Nano 2021; 15: 5600-5609. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu C, Liu F, Li H, et al. One-dimensional van der Waals heterostructures as efficient metal-free oxygen electrocatalysts. ACS Nano 2021; 15: 3309-3319. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu F, Wang C, Liu C, et al. One-dimensional covalent organic framework-carbon nanotube heterostructures for efficient capacitive energy storage. Appl Phys Lett 2021; 119: 211905. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Burdanova MG, Tsapenko AP, Kharlamova MV, et al. A review of the terahertz conductivity and photoconductivity of carbon nanotubes and heteronanotubes. Adv Opt Mater 2021; 9: 2101042. [Article] [CrossRef] [Google Scholar]
  • Meng H, Maruyama S, Xiang R, et al. Thermal conductivity of one-dimensional carbon-boron nitride van der Waals heterostructure: A molecular dynamics study. Int J Heat Mass Transfer 2021; 180: 121773. [Article] [CrossRef] [Google Scholar]
  • Ying P, Zhang J, Du Y, et al. Effects of coating layers on the thermal transport in carbon nanotubes-based van der Waals heterostructures. Carbon 2021; 176: 446-457. [Article] [CrossRef] [Google Scholar]
  • Suzuki H, Kishibuchi M, Shimogami K, et al. Memristive behavior in one-dimensional hexagonal boron nitride/carbon nanotube heterostructure assemblies. ACS Appl Electron Mater 2021; 3: 3555-3566. [Article] [CrossRef] [Google Scholar]
  • Jiang JW. One-dimensional transition metal dichalcogenide lateral heterostructures. Phys Chem Chem Phys 2021; 23: 27312-27319. [Article] [Google Scholar]
  • Qin JK, Wang C, Zhen L, et al. van der Waals heterostructures with one-dimensional atomic crystals. Prog Mater Sci 2021; 122: 100856. [Article] [Google Scholar]
  • Cambré S, Liu M, Levshov D, et al. Nanotube-based 1D heterostructures coupled by van der Waals forces (Small 38/2021). Small 2021; 17: 2170196. [Article] [Google Scholar]
  • Zhang Z, Sun X, Yuan P, et al. SWCNT@BNNT with 1D van der Waals heterostructure with a high optical damage threshold for laser mode-locking. J Lightwave Technol 2021; 39: 5875-5883. [Article] [Google Scholar]
  • Zheng Y, Dai W, Zhang X, et al. Nanotube-based heterostructures for electrochemistry: A mini-review on lithium storage, hydrogen evolution and beyond. J Energy Chem 2022; 70: 630–642 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.