Open Access
Review
Issue |
Natl Sci Open
Volume 1, Number 3, 2022
|
|
---|---|---|
Article Number | 20220018 | |
Number of page(s) | 16 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20220018 | |
Published online | 11 August 2022 |
- Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 1975; 67: 835-851. [Article] [CrossRef] [PubMed] [Google Scholar]
- Walter P, Ibrahimi I, Blobel G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 1981; 91: 545-550. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rapoport TA, Li L, Park E. Structural and mechanistic insights into protein translocation. Annu Rev Cell Dev Biol 2017; 33: 369-390. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee MCS, Miller EA, Goldberg J, et al. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 2004; 20: 87-123. [Article] [CrossRef] [PubMed] [Google Scholar]
- Schekman RW. George E. Palade (1912-2008). Science 2008; 322: 695. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rubartelli A, Cozzolino F, Talio M, et al. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J 1990; 9: 1503-1510. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang M, Schekman R. Unconventional secretion, unconventional solutions. Science 2013; 340: 559-561. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cohen MJ, Chirico WJ, Lipke PN. Through the back door: Unconventional protein secretion. Cell Surf 2020; 6: 100045. [Article] [CrossRef] [PubMed] [Google Scholar]
- Rabouille C. Pathways of unconventional protein secretion. Trends Cell Biol 2017; 27: 230-240. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim J, Gee HY, Lee MG. Unconventional protein secretion—new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci 2018; 131: jcs213686. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dimou E, Nickel W. Unconventional mechanisms of eukaryotic protein secretion. Curr Biol 2018; 28: R406-R410. [Article] [PubMed] [Google Scholar]
- Wegehingel S, Zehe C, Nickel W. Rerouting of fibroblast growth factor 2 to the classical secretory pathway results in post-translational modifications that block binding to heparan sulfate proteoglycans. FEBS Lett 2008; 582: 2387-2392. [Article] [CrossRef] [PubMed] [Google Scholar]
- Popa SJ, Stewart SE, Moreau K. Unconventional secretion of annexins and galectins. Semin Cell Dev Biol 2018; 83: 42-50. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sitia R, Rubartelli A. The unconventional secretion of IL-1β: Handling a dangerous weapon to optimize inflammatory responses. Semin Cell Dev Biol 2018; 83: 12-21. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pallotta MT, Nickel W. FGF2 and IL-1β—explorers of unconventional secretory pathways at a glance. J Cell Sci 2020; 133: jcs250449. [Article] [CrossRef] [PubMed] [Google Scholar]
- Brough D, Pelegrin P, Nickel W. An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL-1β. J Cell Sci 2017; 130: 3197. [Article] [PubMed] [Google Scholar]
- Zhang M, Liu L, Lin X, et al. A translocation pathway for vesicle-mediated unconventional protein secretion. Cell 2020; 181: 637-652.e15. [Article] [CrossRef] [PubMed] [Google Scholar]
- Padmanabhan S, Manjithaya R. Facets of autophagy based unconventional protein secretion—the road less traveled. Front Mol Biosci 2020; 7: 586483. [Article] [CrossRef] [PubMed] [Google Scholar]
- Claude-Taupin A, Jia J, Mudd M, et al. Autophagy’s secret life: Secretion instead of degradation. Essays Biochem 2017; 61: 637-647. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gee HY, Kim J, Lee MG. Unconventional secretion of transmembrane proteins. Semin Cell Dev Biol 2018; 83: 59-66. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zurzolo C. Tunneling nanotubes: Reshaping connectivity. Curr Opin Cell Biol 2021; 71: 139-147. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma L, Li Y, Peng J, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res 2015; 25: 24-38. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jiao H, Jiang D, Hu X, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 2021; 184: 2896-2910.e13. [Article] [CrossRef] [PubMed] [Google Scholar]
- Steringer JP, Nickel W. A direct gateway into the extracellular space: Unconventional secretion of FGF2 through self-sustained plasma membrane pores. Semin Cell Dev Biol 2018; 83: 3-7. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sparn C, Dimou E, Meyer A, et al. Glypican-1 drives unconventional secretion of fibroblast growth factor 2. eLife 2022; 11: e75545. [Article] [CrossRef] [PubMed] [Google Scholar]
- Steringer JP, Lange S, Čujová S, et al. Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. eLife 2017; 6: e28985. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ebert AD, Laussmann M, Wegehingel S, et al. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic 2010; 11: 813-826. [Article] [CrossRef] [PubMed] [Google Scholar]
- Legrand C, Saleppico R, Sticht J, et al. The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 2020; 3: 141. [Article] [PubMed] [Google Scholar]
- Rayne F, Debaisieux S, Yezid H, et al. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 2010; 29: 1348-1362. [Article] [CrossRef] [PubMed] [Google Scholar]
- Katsinelos T, Zeitler M, Dimou E, et al. Unconventional secretion mediates the trans-cellular spreading of Tau. Cell Rep 2018; 23: 2039-2055. [Article] [CrossRef] [PubMed] [Google Scholar]
- Amblard I, Dupont E, Alves I, et al. Bidirectional transfer of Engrailed homeoprotein across the plasma membrane requires PIP2. J Cell Sci 2020; 133: jcs244327. [Article] [CrossRef] [PubMed] [Google Scholar]
- Merezhko M, Brunello CA, Yan X, et al. Secretion of Tau via an unconventional non-vesicular mechanism. Cell Rep 2018; 25: 2027-2035.e4. [Article] [CrossRef] [PubMed] [Google Scholar]
- Faham S, Hileman RE, Fromm JR, et al. Heparin structure and interactions with basic fibroblast growth factor. Science 1996; 271: 1116-1120. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Torrado ĹĆ, Temmerman K, Müller HM, et al. An intrinsic quality-control mechanism ensures unconventional secretion of fibroblast growth factor 2 in a folded conformation. J Cell Sci 2009; 122: 3322-3329. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dimou E, Cosentino K, Platonova E, et al. Single event visualization of unconventional secretion of FGF2. J Cell Biol 2019; 218: 683-699. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lolicato, F, Saleppico, R, Griffo, A, et al. Cholesterol promotes both head group visibility and clustering of PI(4,5)P2 driving unconventional secretion of Fibroblast Growth Factor 2. bioRxiv: 2021.04.16.440132 [Google Scholar]
- Stewart SE, Ashkenazi A, Williamson A, et al. Transbilayer phospholipid movement facilitates annexin translocation across membranes. J Cell Sci 2018; 131: jcs217034. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016; 535: 111-116. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Xia S, Zhang Z, et al. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 2021; 20: 384-405. [Article] [Google Scholar]
- Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526: 666-671. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mulvihill E, Sborgi L, Mari SA, et al. Mechanism of membrane pore formation by human gasdermin-D. EMBO J 2018; 37: e98321. [Article] [CrossRef] [PubMed] [Google Scholar]
- Evavold CL, Ruan J, Tan Y, et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 2018; 48: 35-44.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xia S, Zhang Z, Magupalli VG, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 2021; 593: 607-611. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rühl S, Shkarina K, Demarco B, et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 2018; 362: 956-960. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526: 660-665. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Andrei C, Dazzi C, Lotti L, et al. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 1999; 10: 1463-1475. [Article] [Google Scholar]
- Zhang M, Kenny SJ, Ge L, et al. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife 2015; 4: e11205. [Article] [CrossRef] [PubMed] [Google Scholar]
- Strating JRPM, Martens GJM. The p24 family and selective transport processes at the ER-Golgi interface. Biol Cell 2009; 101: 495-509. [Article] [CrossRef] [PubMed] [Google Scholar]
- Aber R, Chan W, Mugisha S, et al. Transmembrane emp24 domain proteins in development and disease. Genet Res 2019; 101: e14. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, et al. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. Protoplasma 2016; 253: 967-985. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nagae M, Hirata T, Morita-Matsumoto K, et al. 3D structure and interaction of p24β and p24δ golgi dynamics domains: Implication for p24 complex formation and cargo transport. J Mol Biol 2016; 428: 4087-4099. [Article] [CrossRef] [PubMed] [Google Scholar]
- Park E, Rapoport TA. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 2012; 41: 21-40. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wu X, Cabanos C, Rapoport TA. Structure of the post-translational protein translocation machinery of the ER membrane. Nature 2019; 566: 136-139. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273: 501-503. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 2018; 19: 365-381. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee JG, Takahama S, Zhang G, et al. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol 2016; 18: 765-776. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu Y, Cui L, Dibello A, et al. DNAJC5 facilitates USP19-dependent unconventional secretion of misfolded cytosolic proteins. Cell Discov 2018; 4: 11. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee J, Xu Y, Saidi L, et al. Abnormal triaging of misfolded proteins by adult neuronal ceroid lipofuscinosis-associated DNAJC5/CSPα mutants causes lipofuscin accumulation. Autophagy 2022; 1-20. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee J, Xu Y, Zhang T, et al. Secretion of misfolded cytosolic proteins from mammalian cells is independent of chaperone-mediated autophagy. J Biol Chem 2018; 293: 14359-14370. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bruns C, McCaffery JM, Curwin AJ, et al. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 2011; 195: 979-992. [Article] [CrossRef] [PubMed] [Google Scholar]
- Filaquier A, Marin P, Parmentier ML, et al. Roads and hubs of unconventional protein secretion. Curr Opin Cell Biol 2022; 75: 102072. [Article] [CrossRef] [PubMed] [Google Scholar]
- Saraste J, Marie M. Intermediate compartment (IC): From pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150: 407-430. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li S, Yan R, Xu J, et al. A new type of ERGIC-ERES membrane contact mediated by TMED9 and SEC12 is required for autophagosome biogenesis. Cell Res 2022; 32: 119-138. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ge L, Melville D, Zhang M, et al. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2013; 2: e00947. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife 2014; 3: e04135. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ge L, Zhang M, Kenny SJ, et al. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep 2017; 18: 1586-1603. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dupont N, Jiang S, Pilli M, et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 2011; 30: 4701-4711. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kimura T, Jia J, Kumar S, et al. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J 2017; 36: 42-60. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cruz-Garcia D, Brouwers N, Duran JM, et al. A diacidic motif determines unconventional secretion of wild-type and ALS-linked mutant SOD1. J Cell Biol 2017; 216: 2691-2700. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cruz-Garcia D, Curwin AJ, Popoff JF, et al. Remodeling of secretory compartments creates CUPS during nutrient starvation. J Cell Biol 2014; 207: 695-703. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cruz-Garcia D, Malhotra V, Curwin AJ. Unconventional protein secretion triggered by nutrient starvation. Semin Cell Dev Biol 2018; 83: 22-28. [Article] [CrossRef] [PubMed] [Google Scholar]
- Curwin AJ, Brouwers N, Alonso Y, et al. ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. eLife 2016; 5: e16299. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol 2020; 21: 439-458. [Article] [CrossRef] [PubMed] [Google Scholar]
- Duran JM, Anjard C, Stefan C, et al. Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Biol 2010; 188: 527-536. [Article] [CrossRef] [PubMed] [Google Scholar]
- Manjithaya R, Anjard C, Loomis WF, et al. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol 2010; 188: 537-546. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gonzalez CD, Resnik R, Vaccaro MI. Secretory autophagy and its relevance in metabolic and degenerative disease. Front Endocrinol 2020; 11: 266. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ponpuak M, Mandell MA, Kimura T, et al. Secretory autophagy. Curr Opin Cell Biol 2015; 35: 106-116. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ejlerskov P, Rasmussen I, Nielsen TT, et al. Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 2013; 288: 17313-17335. [Article] [CrossRef] [PubMed] [Google Scholar]
- Solvik TA, Nguyen TA, Tony Lin YH, et al. Secretory autophagy maintains proteostasis upon lysosome inhibition. J Cell Biol 2022; 221: e202110151 [CrossRef] [PubMed] [Google Scholar]
- Hyttinen JMT, Niittykoski M, Salminen A, et al. Maturation of autophagosomes and endosomes: A key role for Rab7. Biochim Biophys Acta (BBA)-Mol Cell Res 2013; 1833: 503-510. [Article] [CrossRef] [Google Scholar]
- Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012; 151: 1256-1269. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shorter J, Watson R, Giannakou ME, et al. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J 1999; 18: 4949-4960. [Article] [CrossRef] [PubMed] [Google Scholar]
- Barr FA, Puype M, Vandekerckhove J, et al. GRASP65, a protein involved in the stacking of golgi cisternae. Cell 1997; 91: 253-262. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nüchel J, Tauber M, Nolte JL, et al. An mTORC1-GRASP55 signaling axis controls unconventional secretion to reshape the extracellular proteome upon stress. Mol Cell 2021; 81: 3275-3293.e12. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kinseth MA, Anjard C, Fuller D, et al. The golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 2007; 130: 524-534. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Wang L, Lak B, et al. GRASP55 senses glucose deprivation through O-GlcNAcylation to promote autophagosome-lysosome fusion. Dev Cell 2018; 45: 245-261.e6. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jena KK, Kolapalli SP, Mehto S, et al. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62-NRF2 axis and autophagy. EMBO J 2018; 37: e98358. [Article] [PubMed] [Google Scholar]
- Chauhan S, Kumar S, Jain A, et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 2016; 39: 13-27. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen YD, Fang YT, Cheng YL, et al. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Sci Rep 2017; 7: 5676. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Leidal AM, Huang HH, Marsh T, et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 2020; 22: 187-199. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lee J, Ye Y. The roles of endo-lysosomes in unconventional protein secretion. Cells 2018; 7: 198. [Article] [CrossRef] [PubMed] [Google Scholar]
- Johnson DE, Ostrowski P, Jaumouillé V, et al. The position of lysosomes within the cell determines their luminal pH. J Cell Biol 2016; 212: 677-692. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zeitler M, Steringer JP, Müller HM, et al. HIV-Tat protein forms phosphoinositide-dependent membrane pores implicated in unconventional protein secretion. J Biol Chem 2015; 290: 21976-21984. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.