Natl Sci Open
Volume 1, Number 3, 2022
Special Topic: Novel Optoelectronic Devices
Article Number 20220031
Number of page(s) 20
Section Information Sciences
Published online 04 November 2022
  • Liu AS, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 2004; 427: 615-618. [Article] [Google Scholar]
  • Thomson DJ, Gardes FY, Fedeli JM, et al. 50-Gb/s silicon optical modulator. IEEE Photon Technol Lett 2012; 24: 234-236. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen A, Murphy E. Broadband Optical Modulators: Science, Technology, and Applications. Boca Raton: CRC Press, 2011 [Google Scholar]
  • Xu QF, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator. Nature 2005; 435: 325-327. [Article] [Google Scholar]
  • Lu LJ, Zhao SY, Zhou LJ, et al. 16×16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt Express 2016; 24: 9295-9307. [Article] [Google Scholar]
  • Qiao L, Tang W, Chu T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci Rep 2017; 7: 42306. [Article] [Google Scholar]
  • Zhou HL, Zhao YH, Wei YX, et al. All-in-one silicon photonic polarization processor. Nanophotonics 2019; 8: 2257-2267. [Article] [Google Scholar]
  • Sharma J, Xuan Z, Li H, et al. Silicon photonic microring-based 4×112 Gb/s WDM transmitter with photocurrent-based thermal control in 28-nm CMOS. IEEE J Solid-State Circuits 2022; 57: 1187-1198. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ding JF, Chen HT, Yang L, et al. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator. Opt Express 2012; 20: 7081-7087. [Article] [Google Scholar]
  • Gao G, Luo M, Li X, et al. Transmission of 286 Tb/s data stream in silicon subwavelength grating waveguides. Opt Express 2017; 25: 2918-2927. [Article] [Google Scholar]
  • Li CL, Liu DJ, Dai DX. Multimode silicon photonics. Nanophotonics 2018; 8: 227-247. [Article] [Google Scholar]
  • Blumenthal DJ, Heideman R, Geuzebroek D, et al. Silicon nitride in silicon photonics. Proc IEEE 2018; 106: 2209-2231. [Article] [Google Scholar]
  • Miller SA, Chang YC, Phare CT, et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 2020; 7: 3-6. [Article] [Google Scholar]
  • Tang YB, Peters JD, Bowers JE. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 13 μm transmission. Opt Express 2012; 20: 11529-11535. [Article] [Google Scholar]
  • Xu H, Li XY, Xiao X, et al. High-speed silicon modulator with band equalization. Opt Lett 2014; 39: 4839-4842. [Article] [Google Scholar]
  • Liao QW, Zhang YG, Ma SY, et al. A 50-Gb/s PAM-4 silicon-photonic transmitter incorporating lumped-segment MZM, distributed CMOS driver, and integrated CDR. IEEE J Solid-State Circuits 2022; 57: 767-780. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Harris NC, Ma YJ, Mower J, et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt Express 2014; 22: 10487-10493. [Article] [Google Scholar]
  • Fang Q, Song JF, Liow TY, et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon Technol Lett 2011; 23: 525-527. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Nejadriahi H, Friedman A, Sharma R, et al. Thermo-optic properties of silicon-rich silicon nitride for on-chip applications. Opt Express 2020; 28: 24951-24960. [Article] [Google Scholar]
  • Joo J, Park J, Kim G. Cost-effective 2×2 silicon nitride Mach-Zehnder interferometric (MZI) thermo-optic switch. IEEE Photon Technol Lett 2018; 30: 740-743. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Geim AK. Graphene: Status and prospects. Science 2009; 324: 1530-1534. [Article] [Google Scholar]
  • Novoselov KS, Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature 2012; 490: 192-200. [Article] [Google Scholar]
  • Chen K, Zhou X, Cheng X, et al. Graphene photonic crystal fibre with strong and tunable light-matter interaction. Nat Photonics 2019; 13: 754-759. [Article] [Google Scholar]
  • Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photon 2016; 10: 227-238. [Article] [Google Scholar]
  • Jin M, Wei ZY, Meng YF, et al. Silicon-based graphene electro-optical modulators. Photonics 2022; 9: 82. [Article] [Google Scholar]
  • Amin R, Ma ZZ, Maiti R, et al. Attojoule-efficient graphene optical modulators. Appl Opt 2018; 57: D130-D140. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Koester SJ, Li M. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl Phys Lett 2012; 100: 171107. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yang ZH, Lu RG, Cai SW, et al. A CMOS-compatible and polarization-insensitive graphene optical modulator. Optics Commun 2019; 450: 130-135. [Article] [Google Scholar]
  • Hu X, Zhang YG, Chen DG, et al. Design and modeling of high efficiency graphene intensity/phase modulator based on ultra-thin silicon strip waveguide. J Lightwave Technol 2019; 37: 2284-2292. [Article] [Google Scholar]
  • Hu X, Long Y, Ji MX, et al. Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt Express 2016; 24: 7168-7177. [Article] [Google Scholar]
  • Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotech 2008; 3: 491-495. [Article] [Google Scholar]
  • Bao QL, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012; 6: 3677-3694. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Pan T, Qiu CY, Wu JY, et al. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt Express 2015; 23: 23357-23364. [Article] [Google Scholar]
  • Sorianello V, Contestabile G, Midrio M, et al. Chirp management in silicon-graphene electro absorption modulators. Opt Express 2017; 25: 19371-19381. [Article] [Google Scholar]
  • Qiu CY, Gao WL, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett 2014; 14: 6811-6815. [Article] [Google Scholar]
  • Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008; 320: 1308. [Article] [Google Scholar]
  • Schall D, Mohsin M, Sagade AA, et al. Infrared transparent graphene heater for silicon photonic integrated circuits. Opt Express 2016; 24: 7871-7878. [Article] [Google Scholar]
  • Yan SQ, Zhu XL, Frandsen LH, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun 2017; 8: 14411. [Article] [Google Scholar]
  • Xu ZZ, Qiu CY, Yang YX, et al. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt Express 2017; 25: 19479-19486. [Article] [Google Scholar]
  • Liu M, Yin XB, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature 2011; 474: 64-67. [Article] [Google Scholar]
  • Hu YT, Pantouvaki M, Van Campenhout J, et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev 2016; 10: 307-316. [Article] [Google Scholar]
  • Sorianello V, Contestabile G, Midrio M, et al. Optical pre-emphasis by cascaded graphene electro absorption modulators. IEEE Photon Technol Lett 2019; 31: 955-958. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu M, Yin XB, Zhang X. Double-layer graphene optical modulator. Nano Lett 2012; 12: 1482-1485. [Article] [Google Scholar]
  • Mohsin M, Schall D, Otto M, et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt Express 2014; 22: 15292-15297. [Article] [Google Scholar]
  • Youngblood N, Anugrah Y, Ma R, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett 2014; 14: 2741-2746. [Article] [Google Scholar]
  • Dalir H, Xia Y, Wang Y, et al. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics 2016; 3: 1564-1568. [Article] [CrossRef] [Google Scholar]
  • Giambra MA, Sorianello V, Miseikis V, et al. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt Express 2019; 27: 20145-20155. [Article] [Google Scholar]
  • Sorianello V, Midrio M, Contestabile G, et al. Graphene-silicon phase modulators with gigahertz bandwidth. Nat Photon 2018; 12: 40-44. [Article] [Google Scholar]
  • Ding YH, Zhu XL, Xiao SS, et al. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett 2015; 15: 4393-4400. [Article] [Google Scholar]
  • Phare CT, Lee YHD, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photon 2015; 9: 511-514. [Article] [Google Scholar]
  • Lee BS, Kim B, Freitas AP, et al. High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics 2020; 10: 99-104. [Article] [Google Scholar]
  • Heidari E, Dalir H, Koushyar FM, et al. Integrated ultra-high-performance graphene optical modulator. Nanophotonics 2022; 11: 4011-4016. [Article] [Google Scholar]
  • Majumdar A, Kim J, Vuckovic J, et al. Electrical control of silicon photonic crystal cavity by graphene. Nano Lett 2013; 13: 515-518. [Article] [Google Scholar]
  • Gan XT, Shiue RJ, Gao YD, et al. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett 2013; 13: 691-696. [Article] [Google Scholar]
  • Gao YD, Shiue RJ, Gan XT, et al. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett 2015; 15: 2001-2005. [Article] [Google Scholar]
  • Sun TB, Kim JW, Yuk JM, et al. Surface-normal electro-optic spatial light modulator using graphene integrated on a high-contrast grating resonator. Opt Express 2016; 24: 26035-26043. [Article] [Google Scholar]
  • Wang H, Zhou J, Song DF, et al. Active tuning of near-infrared electromagnetic responses in the graphene/silicon hybrid nanohole arrays by electrical control. Phys Rev B 2022; 105: 035407. [Article] [Google Scholar]
  • Gan S, Cheng CT, Zhan YH, et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 2015; 7: 20249-20255. [Article] [Google Scholar]
  • Nakamura S, Sekiya K, Matano S, et al. High-speed and on-chip optical switch based on a graphene microheater. ACS Nano 2022; 16: 2690-2698. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yu LH, Yin YL, Shi YC, et al. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica 2016; 3: 159-166. [Article] [Google Scholar]
  • Ma YQ, Li JH, Han ZH, et al. All-dielectric graphene-induced T-Slot waveguide electro-optic modulator with polarization-independent operation. IEEE J Sel Top Quantum Electron 2021; 27: 3400708. [Article] [Google Scholar]
  • Chen W, Fan XJ, Li PF, et al. Polarization-insensitive electro-absorption modulator based on graphene-silicon nitride hybrid waveguide. IEEE Photonics J 2021; 13: 6600213. [Article] [Google Scholar]
  • Mao D, Cheng C, Wang FF, et al. Device architectures for low voltage and ultrafast graphene integrated phase modulators. IEEE J Sel Top Quantum Electron 2021; 27: 3400309. [Article] [Google Scholar]
  • Ji LT, Zhang DM, Xu Y, et al. Design of an electro-absorption modulator based on graphene-on-silicon slot waveguide. IEEE Photonics J 2019; 11: 7800911. [Article] [Google Scholar]
  • Alessandri C, Asselberghs I, Brems S, et al. 5 × 25 Gbit/s WDM transmitters based on passivated graphene-silicon electro-absorption modulators. Appl Opt 2020; 59: 1156. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sorianello V, Contestabile G, Romagnoli M. Graphene on silicon modulators. J Lightwave Technol 2020; 38: 2782–2789 [Google Scholar]
  • Denoyer G, Cole C, Santipo A, et al. Hybrid silicon photonic circuits and transceiver for 50 Gb/s NRZ transmission over single-mode fiber. J Lightwave Technol 2015; 33: 1247-1254. [Article] [Google Scholar]
  • Barclay PE, Srinivasan K, Painter O. Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper. Opt Express 2005; 13: 801-820. [Article] [Google Scholar]
  • Ludwig GW, Watters RL. Drift and conductivity mobility in silicon. Phys Rev 1956; 101: 1699-1701. [Article] [Google Scholar]
  • Krückel CJ, Torres-Company V, Andrekson PA, et al. Continuous wave-pumped wavelength conversion in low-loss silicon nitride waveguides. Opt Lett 2015; 40: 875-878. [Article] [Google Scholar]
  • Arbabi A, Goddard LL. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt Lett 2013; 38: 3878-3881. [Article] [Google Scholar]
  • Ziegler G, Heinrich J, Wötting G. Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J Mater Sci 1987; 22: 3041-3086. [Article] [Google Scholar]
  • Leitch S, Moewes A, Ouyang L, et al. Properties of non-equivalent sites and bandgap of spinel-phase silicon nitride. J Phys-Condens Matter 2004; 16: 6469-6476. [Article] [Google Scholar]
  • Kalli K, Dobb HL, Webb DJ, et al. Development of an electrically tuneable Bragg grating filter in polymer optical fibre operating at 1.55 μm. Meas Sci Technol 2007; 18: 3155-3164. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Takahashi M, Uchida Y, Yamasaki S, et al. Compact and low-loss coherent mixer based on high Δ ZrO2-SiO2 PLC. J Lightwave Technol 2014; 32: 3081-3088. [Article] [Google Scholar]
  • Soref RA, Bennett BR. Electrooptical effects in silicon. IEEE J Quantum Electron 1987; 23: 123-129. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhan D, Yan JX, Lai LF, et al. Engineering the electronic structure of graphene. Adv Mater 2012; 24: 4055-4069. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Avouris P. Graphene: Electronic and photonic properties and devices. Nano Lett 2010; 10: 4285-4294. [Article] [Google Scholar]
  • Cano D, Ferrier A, Soundarapandian K, et al. Fast electrical modulation of strong near-field interactions between erbium emitters and graphene. Nat Commun 2020; 11: 4094. [Article] [Google Scholar]
  • Sherrott MC, Hon PWC, Fountaine KT, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett 2017; 17: 3027-3034. [Article] [Google Scholar]
  • Kim J, Son H, Cho DJ, et al. Electrical control of optical plasmon resonance with graphene. Nano Lett 2012; 12: 5598-5602. [Article] [Google Scholar]
  • Yin X, Ke XM, Chen L, et al. Ultra-broadband TE-pass polarizer using a cascade of multiple few-layer graphene embedded silicon waveguides. J Lightwave Technol 2016; 34: 3181-3187. [Article] [Google Scholar]
  • Pei CY, Yang LZ, Wang GC, et al. Broadband graphene/glass hybrid waveguide polarizer. IEEE Photon Technol Lett 2015; 27: 927-930. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Bao QL, Zhang H, Wang B, et al. Broadband graphene polarizer. Nat Photon 2011; 5: 411-415. [Article] [Google Scholar]
  • Du W, Li EP, Hao R. Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett 2014; 26: 2008-2011. [Article] [CrossRef] [Google Scholar]
  • Li H, Anugrah Y, Koester SJ, et al. Optical absorption in graphene integrated on silicon waveguides. Appl Phys Lett 2012; 101: 111110. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Qiu CY, Pan T, Gao WL, et al. Proposed high-speed micron-scale spatial light valve based on a silicon-graphene hybrid structure. Opt Lett 2015; 40: 4480-4483. [Article] [Google Scholar]
  • Ye SW, Yuan F, Zou XH, et al. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J Sel Top Quantum Electron 2017; 23: 76-80. [Article] [CrossRef] [Google Scholar]
  • Tao YS, Shu HW, Jin M, et al. Numerical investigation of the linearity of graphene-based silicon waveguide modulator. Opt Express 2019; 27: 9013-9031. [Article] [Google Scholar]
  • Sorianello V, Midrio M, Romagnoli M. Design optimization of single and double layer graphene phase modulators in SOI. Opt Express 2015; 23: 6478-6490. [Article] [Google Scholar]
  • Rodriguez FJ, Aznakayeva DE, Marshall OP, et al. Solid-state electrolyte-gated graphene in optical modulators. Adv Mater 2017; 29: 1606372. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zeng BB, Huang ZQ, Singh A, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci Appl 2018; 7: 51. [Article] [Google Scholar]
  • Yu LH, Dai DX, He SL. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl Phys Lett 2014; 105: 251104. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kim JT, Chung KH, Choi CG. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. Opt Express 2013; 21: 15280-15286. [Article] [Google Scholar]
  • Su MY, Yang B, Liu JM, et al. Broadband graphene-on-silicon modulator with orthogonal hybrid plasmonic waveguides. Nanophotonics 2020; 9: 1529-1538. [Article] [Google Scholar]
  • Wang BB, Blaize S, Seok JB, et al. Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics. IEEE J Sel Top Quantum Electron 2019; 25: 4600706. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.