Natl Sci Open
Volume 1, Number 3, 2022
Special Topic: Novel Optoelectronic Devices
Article Number 20220026
Number of page(s) 22
Section Information Sciences
Published online 23 September 2022
  • Hargrove LE, Fork RL, Pollack MA. Locking of He–Ne laser modes induced by synchronous intracavity modulation. Appl Phys Lett 1964; 5: 4-5. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Bloom BJ, Nicholson TL, Williams JR, et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 2014; 506: 71-75. [Article] [Google Scholar]
  • Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications. Commun Phys 2019; 2: 1-6. [Article] [NASA ADS] [Google Scholar]
  • Beloy K, Bodine MI. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 2021; 591: 564–569 [Google Scholar]
  • Hall JL. Nobel lecture: Defining and measuring optical frequencies. Rev Mod Phys 2006; 78: 1279-1295. [Article] [Google Scholar]
  • Thorpe MJ, Balslev-Clausen D, Kirchner MS, et al. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis. Opt Express 2008; 16: 2387-2397. [Article] [Google Scholar]
  • Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl Opt 2000; 39: 5512-5517. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hänsch TW. Nobel lecture: Passion for precision. Rev Mod Phys 2006; 78: 1297-1309. [Article] [Google Scholar]
  • Hodgkinson J, Tatam RP. Optical gas sensing: A review. Meas Sci Technol 2012; 24: 012004. [Article] [Google Scholar]
  • Nugent-Glandorf L, Giorgetta FR, Diddams SA. Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb. Appl Phys B 2015; 119: 327-338. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Delfyett PJ, Gee S, Myoung-Taek Choi S, et al. Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications. J Lightwave Technol 2006; 24: 2701-2719. [Article] [Google Scholar]
  • Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat Photon 2014; 8: 375-380. [Article] [Google Scholar]
  • Marin-Palomo P, Kemal JN, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 2017; 546: 274-279. [Article] [Google Scholar]
  • Lundberg L, Mazur M, Mirani A, et al. Phase-coherent lightwave communications with frequency combs. Nat Commun 2020; 11: 1-7. [Article] [Google Scholar]
  • Diddams SA. The evolving optical frequency comb [invited]. J Opt Soc Am B 2010; 27: B51. [Article] [Google Scholar]
  • Ito T, Nakamae H, Hazama Y, et al. Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers. Commun Phys 2018; 1: 42. [Article] [NASA ADS] [Google Scholar]
  • Weng W, Kaszubowska-Anandarajah A, He J, et al. Gain-switched semiconductor laser driven soliton microcombs. Nat Commun 2021; 12: 1425. [Article] [Google Scholar]
  • Coluccelli N, Cassinerio M, Redding B, et al. The optical frequency comb fibre spectrometer. Nat Commun 2016; 7: 1. [Article] [Google Scholar]
  • Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources. Phys Rep 2018; 729: 1-81. [Article] [Google Scholar]
  • Gaeta AL, Lipson M, Kippenberg TJ. Photonic-chip-based frequency combs. Nat Photon 2019; 13: 158-169. [Article] [Google Scholar]
  • Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019; 568: 373-377. [Article] [Google Scholar]
  • Ren T, Zhang M, Wang C, et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photon Technol Lett 2019; 31: 889-892. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ho PT, Glasser LA, Ippen EP, et al. Picosecond pulse generation with a cw GaAlAs laser diode. Appl Phys Lett 1978; 33: 241-242. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Huang X, Stintz A, Li H, et al. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl Phys Lett 2001; 78: 2825-2827. [Article] [CrossRef] [Google Scholar]
  • Koch BR, Fang AW, Cohen O, et al. Mode-locked silicon evanescent lasers. Opt Express 2007; 15: 11225-11233. [Article] [Google Scholar]
  • Meng B, Singleton M, Shahmohammadi M, et al. Mid-infrared frequency comb from a ring quantum cascade laser. Optica 2020; 7: 162-167. [Article] [Google Scholar]
  • Wang ZH, Wei WQ, Feng Q, et al. InAs/GaAs quantum dot single-section mode-locked lasers on Si (001) with optical self-injection feedback. Opt Express 2021; 29: 674-683. [Article] [Google Scholar]
  • DeCusatis C M, Priest D G. Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks. In: Proceedings of SPIE:Applications of Photonic Technology, 2000. 4087: 94–111 [Google Scholar]
  • Marin-Palomo P, Kemal JN, Kippenberg TJ, et al. Performance of chip-scale optical frequency comb generators in coherent WDM communications. Opt Express 2022; 28: 12897-12910. [Article] [Google Scholar]
  • Li NX, Chen GY, Lim LW, et al. Fully integrated electrically driven optical frequency comb at communication wavelength. Nanophotonics 2022; 11: 2989-3006. [Article] [Google Scholar]
  • Rickman A. The commercialization of silicon photonics. Nat Photon 2014; 8: 579-582. [Article] [Google Scholar]
  • Thomson D, Zilkie A, Bowers JE, et al. Roadmap on silicon photonics. J Opt 2016; 18: 073003. [Article] [Google Scholar]
  • Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 2020; 581: 164-170. [Article] [Google Scholar]
  • Diddams SA, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 2007; 445: 627-630. [Article] [Google Scholar]
  • Wang B, Morgan JS, Sun K, et al. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci Appl 2021; 10: 4. [Article] [Google Scholar]
  • Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator. Nature 2007; 450: 1214-1217. [Article] [Google Scholar]
  • Hsieh IW, Chen X, Liu X, et al. Supercontinuum generation in silicon photonic wires. Opt Express 2007; 15: 15242-15249. [Article] [Google Scholar]
  • Tucker RS, Koren U, Raybon G, et al. 40 GHz active mode-locking in a 1.5 μm monolithic extended-cavity laser. Electron Lett 1989; 25: 621-622. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Griffith AG, Lau RKW, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation. Nat Commun 2015; 6: 1-5. [Article] [Google Scholar]
  • Lee H, Chen T, Li J, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat Photon 2012; 6: 369-373. [Article] [Google Scholar]
  • Levy JS, Gondarenko A, Foster MA, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photon 2010; 4: 37-40. [Article] [Google Scholar]
  • Jung H, Xiong C, Fong KY, et al. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett 2013; 38: 2810-2813. [Article] [Google Scholar]
  • Pu M, Ottaviano L, Semenova E, et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 2016; 3: 823-826. [Article] [Google Scholar]
  • He Y, Yang QF, Ling J, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 2019; 6: 1138-1144. [Article] [Google Scholar]
  • Guidry MA, Yang KY, Lukin DM, et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica 2020; 7: 1139-1142. [Article] [Google Scholar]
  • Asghari M, Krishnamoorthy AV. Energy-efficient communication. Nat Photon 2011; 5: 268-270. [Article] [Google Scholar]
  • Lim AEJ, Liow TY, Song JF, et al. Path to silicon photonics commercialization: The foundry model discussion. In: Silicon Photonics III. Berlin: Springer, 2016. 122: 191–215 [Google Scholar]
  • Haus HA. Mode-locking of lasers. IEEE J Sel Top Quantum Electron 2000; 6: 1173-1185. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Bowers JE, Morton PA, Mar A, et al. Actively mode-locked semiconductor lasers. IEEE J Quantum Electron 1989; 25: 1426-1439. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chang L, Liu S, Bowers JE. Integrated optical frequency comb technologies. Nat Photon 2022; 16: 95-108. [Article] [Google Scholar]
  • Menyuk CR, Wahlstrand JK, Willits J, et al. Pulse dynamics in mode-locked lasers: Relaxation oscillations and frequency pulling. Opt Express 2007; 15: 6677-6689. [Article] [Google Scholar]
  • Derickson DJ, Helkey RJ, Mar A, et al. Short pulse generation using multisegment mode-locked semiconductor lasers. IEEE J Quantum Electron 1992; 28: 2186-2202. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chen YK, Wu MC, Tanbun-Ek T, et al. Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers. Appl Phys Lett 1991; 58: 1253-1255. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu S, Jung D, Norman JC, et al. 490 fs pulse generation from passively mode‐locked single section quantum dot laser directly grown on on‐axis GaP/Si. Electron lett 2018; 54: 432-433. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Khurgin JB, Dikmelik Y, Hugi A, et al. Coherent frequency combs produced by self-frequency modulation in quantum cascade lasers. Appl Phys Lett 2014; 104: 081118. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liang W, Ilchenko VS, Eliyahu D, et al. Ultralow noise miniature external cavity semiconductor laser. Nat Commun 2015; 6: 7371. [Article] [Google Scholar]
  • Watanabe H, Miyajima T, Kuramoto M, et al. 10-W peak-power picosecond optical pulse generation from a triple section blue-violet self-pulsating laser diode. Appl Phys Express 2010; 3: 052701. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Martins-Filho JF, Avrutin EA, Ironside CN, et al. Monolithic multiple colliding pulse mode-locked quantum-well lasers, experiment and theory. IEEE J Sel Top Quantum Electron 1995; 1: 539-551. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Marsh JH, Hou L. Mode-locked laser diodes and their monolithic integration. IEEE J Sel Top Quantum Electron 2017; 23: 1-11. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Norman JC, Jung D, Zhang Z, et al. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron 2019; 55: 1-11. [Article] [Google Scholar]
  • Rafailov EU, Cataluna MA, Sibbett W. Mode-locked quantum-dot lasers. Nat Photon 2007; 1: 395-401. [Article] [Google Scholar]
  • Bimberg D, Pohl UW. Quantum dots: Promises and accomplishments. Mater Today 2011; 14: 388-397. [Article] [Google Scholar]
  • Kageyama T, Nishi K, Yamaguchi M, et al. Extremely high temperature (220 °C) continuous-wave operation of 1300-nm-range quantum-dot lasers. In: Proceedings of the European Conference on Lasers and Electro-Optics, 2011. PDA_1 [Google Scholar]
  • Liu AY, Srinivasan S, Norman J, et al. Quantum dot lasers for silicon photonics [Invited]. Photon Res 2015; 3: B1. [Article] [Google Scholar]
  • Liu AY, Komljenovic T, Davenport ML, et al. Reflection sensitivity of 13 μm quantum dot lasers epitaxially grown on silicon. Opt Express 2017; 25: 9535-9543. [Article] [Google Scholar]
  • Schmeckebier H, Bimberg D. Quantum-dot semiconductor optical amplifiers for energy-efficient optical communication. In: Green Photon Electron. Cham: Springer, 2017. 37–74 [CrossRef] [Google Scholar]
  • Arsenijević D, Bimberg D. Quantum-dot mode-locked lasers: Sources for tunable optical and electrical pulse combs. In: Green Photon Electron. Cham: Springer, 2017. 75–106 [CrossRef] [Google Scholar]
  • Duan JN, Wang XG, Zhou YG, et al. Relative intensity noise properties of quantum dot lasers. In: Proceedings of SPIE Semiconductor Lasers and Applications VIII, 2018. 10812S [Google Scholar]
  • Liu S, Wu X, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity. Optica 2019; 6: 128-134. [Article] [Google Scholar]
  • Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature 2012; 492: 229-233. [Article] [Google Scholar]
  • Wang CY, Kuznetsova L, Gkortsas VM, et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt Express 2009; 17: 12929-12943. [Article] [Google Scholar]
  • Novus Light Technologies Today, News and analysis from the world of light. (20 March 2017, date last accessed) [Google Scholar]
  • Wang ZC, Van Gasse K, Moskalenko V, et al. A III-V-on-Si ultra-dense comb laser. Light Sci Appl 2017; 6: e16260. [Article] [Google Scholar]
  • Cuyvers S, Haq B, Op de Beeck C, et al. Low noise heterogeneous III-V-on-silicon-nitride mode-locked comb laser. Laser Photonics Rev 2021; 15: 2000485. [Article] [Google Scholar]
  • Kurczveil G, Zhang C, Descos A, et al. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels. In: Proceedings ofIEEE International Semiconductor Laser Conference (ISLC), 2018. 1–2 [Google Scholar]
  • Liu S, Wu X, Norman J, et al. 100 GHz colliding pulse mode locked quantum dot lasers directly grown on Si for WDM application. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2019. ATu3P. 5 [Google Scholar]
  • Pan SJ, Huang JO, Zhou ZC, et al. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C. Photon Res 2020; 8: 1937-1942. [Article] [Google Scholar]
  • Pan S, Zhang H, Liu Z, et al. Multi-wavelength 128 Gbit s−1 λ−1 PAM4 optical transmission enabled by a 100 GHz quantum dot mode-locked optical frequency comb. J Phys D-Appl Phys 2022; 55: 144001. [Article] [Google Scholar]
  • Huang JZ, Ji ZT, Chen JJ, et al. Ultra-broadband flat-top quantum dot comb lasers. Photon Res 2022; 10: 1308-1316. [Article] [Google Scholar]
  • Jin W, Yang QF, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat Photonics 2021; 15: 346-353. [Article] [Google Scholar]
  • Pavlov NG, Koptyaev S, Lihachev GV, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat Photon 2018; 12: 694-698. [Article] [Google Scholar]
  • Raja AS, Voloshin AS, Guo H, et al. Electrically pumped photonic integrated soliton microcomb. Nat Commun 2019; 10: 680. [Article] [Google Scholar]
  • Chen JJ, Wei WQ, Qin JL, et al. Multi-wavelength injection locked semiconductor comb laser. Photon Res 2022; 10: 1840. [Article] [Google Scholar]
  • Pan S, Zhang H, Wu D, et al. O-band 100 GHz quantum dot mode-locked optical frequency comb with 128 Gbit/s/ λ PAM-4 optical transmission ability. In: Proceedings ofAsia Communications and Photonics Conference, 2021. T4D.7 [Google Scholar]
  • Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett 1982; 40: 939-941. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cataluna MA, Rafailov EU, McRobbie AD, et al. Stable mode-locked operation up to 80 /spl deg/C from an InGaAs quantum-dot laser. IEEE Photon Technol Lett 2006; 18: 1500-1502. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liang D, Bowers JE. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light: Adv Manuf 2021; 2: 59-83. [Article] [Google Scholar]
  • Ramírez JM, Fanneau de la Horie P, Provost JG, et al. Low-threshold, high-power on-chip tunable III-V/Si lasers with integrated semiconductor optical amplifiers. Appl Sci 2021; 11: 11096. [Article] [CrossRef] [Google Scholar]
  • Kurczveil G, Liang D, Fiorentino M, et al. Robust hybrid quantum dot laser for integrated silicon photonics. Opt Express 2016; 24: 16167-16174. [Article] [Google Scholar]
  • Kurczveil G, Seyedi MA, Liang D, et al. Error-free operation in a hybrid-silicon quantum dot comb laser. IEEE Photon Technol Lett 2018; 30: 71-74. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Dong B, Huang H, Duan J, et al. Frequency comb dynamics of a 13 μm hybrid-silicon quantum dot semiconductor laser with optical injection. Opt Lett 2019; 44: 5755-5758. [Article] [Google Scholar]
  • Li Q, Lau KM. Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater 2017; 63: 105-120. [Article] [Google Scholar]
  • Wei W, Feng Q, Wang Z, et al. Perspective: Optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J Semicond 2019; 40: 101303. [Article] [Google Scholar]
  • Wang T, Liu H, Lee A, et al. 13-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express 2011; 19: 11381-11386. [Article] [Google Scholar]
  • Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon 2011; 5: 416-419. [Article] [Google Scholar]
  • Liu AY, Peters J, Huang X, et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett 2017; 42: 338-341. [Article] [Google Scholar]
  • Kwoen J, Jang B, Lee J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express 2018; 26: 11568-11576. [Article] [Google Scholar]
  • Norman J, Kennedy MJ, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express 2017; 25: 3927-3934. [Article] [Google Scholar]
  • Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photon 2016; 10: 307-311. [Article] [Google Scholar]
  • Li Q, Ng KW, Lau KM. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett 2015; 106: 072105. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater 2016; 4: 046101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wei WQ, Wang JH, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett 2018; 113: 053107. [Article] [CrossRef] [Google Scholar]
  • Zhang B, Wei WQ, Wang JH, et al. 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy. Opt Express 2019; 27: 19348-19358. [Article] [Google Scholar]
  • Wei WQ, Zhang JY, Wang JH, et al. Phosphorus-free 15 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt Lett 2020; 45: 2042. [Article] [Google Scholar]
  • Wei WQ, Feng Q, Guo JJ, et al. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt Express 2020; 28: 26555. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.