Issue
Natl Sci Open
Volume 2, Number 2, 2023
Special Topic: Chemistry Boosts Carbon Neutrality
Article Number 20220037
Number of page(s) 13
Section Chemistry
DOI https://doi.org/10.1360/nso/20220037
Published online 22 December 2022
  • Rahman MZ, Edvinsson T, Gascon J. Hole utilization in solar hydrogen production. Nat Rev Chem 2022; 6: 243-258. [Article] [Google Scholar]
  • Jin B, Cho Y, Park C, et al. A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ Sci 2022; 15: 672-679. [Article] [CrossRef] [Google Scholar]
  • Sang Y, Zhao Z, Zhao M, et al. From UV to near-infrared, WS2 nanosheet: A novel photocatalyst for full solar light spectrum photodegradation. Adv Mater 2015; 27: 363-369. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Kang W, Deng N, Ju J, et al. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 2016; 8: 16541-16588. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang C, Du P, Luo L, et al. Utilizing upconversion emission to improve the photocatalytic performance of the BiOI microplate: A bifunctional platform for pollutant degradation and hydrogen production. Ind Eng Chem Res 2021; 60: 16245-16257. [Article] [CrossRef] [Google Scholar]
  • Li B, Hu Y, Shen Z, et al. Photocatalysis driven by near-infrared light: materials design and engineering for environmentally friendly photoreactions. ACS EST Eng 2021; 1: 947-964. [Article] [CrossRef] [Google Scholar]
  • Chilkalwar AA, Rayalu SS. Synergistic plasmonic and upconversion effect of the (Yb,Er)NYF-TiO2/Au composite for photocatalytic hydrogen generation. J Phys Chem C 2018; 122: 26307-26314. [Article] [Google Scholar]
  • Chen Y, Huang G, Gao Y, et al. Up-conversion fluorescent carbon quantum dots decorated covalent triazine frameworks as efficient metal-free photocatalyst for hydrogen evolution. Int J Hydrogen Energy 2022; 47: 8739-8748. [Article] [CrossRef] [Google Scholar]
  • Kumar A, Kumar A, Chand H, et al. Upconversion nanomaterials for photocatalytic applications. In: Thomas S, Upadhyay K, Tamrakar R K, et al., eds. Upconversion Nanophosphors. Amsterdam: Elsevier, 2022. 391–406 [CrossRef] [Google Scholar]
  • Li M, Yao W, Liu J, et al. Facile synthesis and screen printing of dual-mode luminescent NaYF4:Er,Yb (Tm)/carbon dots for anti-counterfeiting applications. J Mater Chem C 2017; 5: 6512-6520. [Article] [CrossRef] [Google Scholar]
  • Jiang L, Zhou S, Yang J, et al. Near-infrared light responsive TiO2 for efficient solar energy utilization. Adv Funct Mater 2022; 32: 2108977. [Article] [Google Scholar]
  • Wang J, Yu Y, Cui J, et al. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl Catal B-Environ 2022; 301: 120814. [Article] [CrossRef] [Google Scholar]
  • Chen Z, Fan TT, Yu X, et al. Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. J Mater Chem A 2018; 6: 15310-15319. [Article] [Google Scholar]
  • Niu P, Qiao M, Li Y, et al. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 2018; 44: 73-81. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Ran J, Ma TY, Gao G, et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ Sci 2015; 8: 3708-3717. [Article] [CrossRef] [Google Scholar]
  • Henderson MA, White JM, Uetsuka H, et al. Photochemical charge transfer and trapping at the interface between an organic adlayer and an oxide semiconductor. J Am Chem Soc 2003; 125: 14974-14975. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu D, Xu X, Du Y, et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat Commun 2016; 7: 10254. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu G, Niu P, Sun C, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 2010; 132: 11642-11648. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li Y, Ho W, Lv K, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl Surf Sci 2018; 430: 380-389. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Chang F, Zhang J, Xie Y, et al. Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4-TiO2 hybrids. Appl Surf Sci 2014; 311: 574-581. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gao X, Feng J, Su D, et al. In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy 2019; 59: 598-609. [Article] [Google Scholar]
  • Tang Y, Di W, Zhai X, et al. NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb,Tm@TiO2 core-shell nanoparticles. ACS Catal 2013; 3: 405-412. [Article] [CrossRef] [Google Scholar]
  • Yuan YJ, Shen Z, Wu S, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl Catal B-Environ 2019; 246: 120-128. [Article] [CrossRef] [Google Scholar]
  • Fu J, Xu Q, Low J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ 2019; 243: 556-565. [Article] [CrossRef] [Google Scholar]
  • Aleksandrzak M, Baranowska D, Kedzierski T, et al. Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Appl Catal B-Environ 2019; 257: 117906. [Article] [CrossRef] [Google Scholar]
  • Bi L, Gao X, Zhang L, et al. Enhanced photocatalytic hydrogen evolution of NiCoP/g-C3 N4 with improved separation efficiency and charge transfer efficiency. ChemSusChem 2018; 11: 276-284. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li W, Chu X, Wang F, et al. Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution. Appl Catal B-Environ 2021; 288: 120034. [Article] [CrossRef] [Google Scholar]
  • Wang B, Yan C, Xu G, et al. Highly efficient solar-driven photocatalytic hydrogen evolution with FeMoSx/mpg-C3N4 heterostructure. Chem Eng J 2022; 427: 131507. [Article] [CrossRef] [Google Scholar]
  • Xiao M, Jiao Y, Luo B, et al. Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Res 2021; [Article] [Google Scholar]
  • Shang J, Xu X, Liu K, et al. Obvious effect of molybdenum supporting on morphology and upconversion luminescence of Er-Yb:TiO2 and improvement of H2 generation for W18O49. J Alloys Compd 2019; 785: 610-615. [Article] [CrossRef] [Google Scholar]
  • Shang J, Xu X, Liu K, et al. LSPR-driven upconversion enhancement and photocatalytic H2 evolution for Er-Yb:TiO2/MoO3−x nano-semiconductor heterostructure. Ceramics Int 2019; 45: 16625-16630. [Article] [Google Scholar]
  • Wang Q, Xiao L, Liu X, et al. Special Z-scheme Cu3P/TiO2 hetero-junction for efficient photocatalytic hydrogen evolution from water. J Alloys Compd 2022; 894: 162331. [Article] [CrossRef] [Google Scholar]
  • Li J, Ma L, Fu C, et al. Urchinlike carbon-coated TiO2 microspheres with enhanced photothermal-photocatalytic hydrogen evolution performance for full-spectrum solar energy conversion. Ind Eng Chem Res 2022; 61: 6436-6447. [Article] [CrossRef] [Google Scholar]
  • Bu Y, Chen Z, Li W. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl Catal B-Environ 2014; 144: 622-630. [Article] [CrossRef] [Google Scholar]
  • Kim H, Monllor-Satoca D, Kim W, et al. N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy Environ Sci 2015; 8: 247-257. [Article] [CrossRef] [Google Scholar]
  • Liao J, Zhou J, Song Y, et al. Preselectable optical fingerprints of heterogeneous upconversion nanoparticles. Nano Lett 2021; 21: 7659-7668. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liao J, Zhou J, Song Y, et al. Optical fingerprint classification of single upconversion nanoparticles by deep learning. J Phys Chem Lett 2021; 12: 10242-10248. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Guo X, Song W, Chen C, et al. Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites. Phys Chem Chem Phys 2013; 15: 14681-14688. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Bednarkiewicz A, Nyk M, Samoc M, et al. Up-conversion FRET from Er3+/Yb3+:NaYF4 nanophosphor to CdSe quantum dots. J Phys Chem C 2010; 114: 17535-17541. [Article] [CrossRef] [Google Scholar]
  • Gao H, Yan S, Wang J, et al. Ion coordination significantly enhances the photocatalytic activity of graphitic-phase carbon nitride. Dalton Trans 2014; 43: 8178-8183. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Bhunia MK, Abou-Hamad E, Anjum DH, et al. Solvent-free synthesis of quaternary metal sulfide nanoparticles derived from thiourea. Part Part Syst Charact 2018; 35: 1700183. [Article] [CrossRef] [Google Scholar]
  • Chen G, Ohulchanskyy TY, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 2010; 4: 3163-3168. [Article] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.