Issue |
Natl Sci Open
Volume 2, Number 2, 2023
Special Topic: Chemistry Boosts Carbon Neutrality
|
|
---|---|---|
Article Number | 20220028 | |
Number of page(s) | 30 | |
Section | Chemistry | |
DOI | https://doi.org/10.1360/nso/20220028 | |
Published online | 30 November 2022 |
- Smil V. Detonator of the population explosion. Nature 1999; 400: 415. [Article] [CrossRef] [Google Scholar]
- Schiermeier Q. Increased flood risk linked to global warming. Nature 2011; 470: 316-317. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Root TL, Price JT, Hall KR, et al. Fingerprints of global warming on wild animals and plants. Nature 2003; 421: 57-60. [Article] [CrossRef] [PubMed] [Google Scholar]
- Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013; 52: 797-809. [Article] [CrossRef] [Google Scholar]
- Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 2010; 39: 4206. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi R, Zhao Y, Waterhouse GIN, et al. Defect engineering in photocatalytic nitrogen fixation. ACS Catal 2019; 9: 9739-9750. [Article] [CrossRef] [Google Scholar]
- Zhang S, Zhao Y, Shi R, et al. Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem 2019; 1: 100013. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Zhang G, Sewell CD, Zhang P, et al. Nanostructured photocatalysts for nitrogen fixation. Nano Energy 2020; 71: 104645. [Article] [CrossRef] [Google Scholar]
- Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv Mater 2014; 26: 4607-4626. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yuan YP, Ruan LW, Barber J, et al. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ Sci 2014; 7: 3934-3951. [Article] [CrossRef] [Google Scholar]
- White JL, Baruch MF, Pander III JE, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem Rev 2015; 115: 12888-12935. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev 2019; 48: 5310-5349. [Article] [Google Scholar]
- Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373-399. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fukuto JM, Carrington SJ, Tantillo DJ, et al. Small molecule signaling agents: The integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol 2012; 25: 769-793. [Article] [CrossRef] [PubMed] [Google Scholar]
- Valentine JS, Foote CS, Greenberg A, et al. Active Oxygen in Biochemistry. Glasgow: Blackie Academic & Professional, 1995 [Google Scholar]
- Baker CJ, Orlandi EW. Active oxygen in plant pathogenesis. Annu Rev Phytopathol 1995; 33: 299-321. [Article] [CrossRef] [PubMed] [Google Scholar]
- van der Ham CJM, Koper MTM, Hetterscheid DGH. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev 2014; 43: 5183-5191. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jia HP, Quadrelli EA. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 2014; 43: 547-564. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma XL, Liu JC, Xiao H, et al. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J Am Chem Soc 2018; 140: 46-49. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kitano M, Inoue Y, Yamazaki Y, et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 2012; 4: 934-940. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Skúlason E, Bligaard T, Gudmundsdóttir S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 2012; 14: 1235-1245. [Article] [CrossRef] [PubMed] [Google Scholar]
- Abghoui Y, Garden AL, Hlynsson VF, et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys Chem Chem Phys 2015; 17: 4909-4918. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Azofra LM, Li N, MacFarlane DR, et al. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ Sci 2016; 9: 2545-2549. [Article] [CrossRef] [Google Scholar]
- Légaré MA, Bélanger-Chabot G, Dewhurst RD, et al. Nitrogen fixation and reduction at boron. Science 2018; 359: 896-900. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cheng M, Xiao C, Xie Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J Mater Chem A 2019; 7: 19616-19633. [Article] [CrossRef] [Google Scholar]
- Wang C, Sun Z, Zheng Y, et al. Recent progress in visible light photocatalytic conversion of carbon dioxide. J Mater Chem A 2019; 7: 865-887. [Article] [Google Scholar]
- Sun Z, Ma T, Tao H, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017; 3: 560-587. [Article] [CrossRef] [Google Scholar]
- Shao W, Li X, Zhu J, et al. Metaln+-metalδ+ pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons. Nano Res 2022; 15: 1882-1891. [Article] [CrossRef] [Google Scholar]
- Zhu S, Li X, Jiao X, et al. Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites. Nano Lett 2021; 21: 2324-2331. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Han P, Lv X, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018; 2: 2551-2582. [Article] [CrossRef] [Google Scholar]
- Sakakura T, Choi JC, Yasuda H. Transformation of carbon dioxide. Chem Rev 2007; 107: 2365-2387. [Article] [CrossRef] [PubMed] [Google Scholar]
- Freund HJ, Roberts MW. Surface chemistry of carbon dioxide. Surf Sci Rep 1996; 25: 225-273. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 2006; 115: 2-32. [Article] [CrossRef] [Google Scholar]
- Sun Y, Gao S, Lei F, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev 2015; 44: 623-636. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun Y, Gao S, Lei F, et al. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc Chem Res 2015; 48: 3-12. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dou Y, Zhang L, Xu X, et al. Atomically thin non-layered nanomaterials for energy storage and conversion. Chem Soc Rev 2017; 46: 7338-7373. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Peng L, Fang Z, et al. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv Mater 2018; 30: 1706347. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Voiry D, Shin HS, Loh KP, et al. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem 2018; 2: 0105. [Article] [CrossRef] [Google Scholar]
- Zhou Y, Zhang Z, Fang Z, et al. Defect engineering of metal-oxide interface for proximity of photooxidation and photoreduction. Proc Natl Acad Sci USA 2019; 116: 10232-10237. [Article] [Google Scholar]
- Sun X, Huang H, Zhao Q, et al. Thin-layered photocatalysts. Adv Funct Mater 2020; 30: 1910005. [Article] [Google Scholar]
- Liang L, Ling P, Li Y, et al. Atmospheric CO2 capture and photofixation to near-unity CO by Ti3+-Vo-Ti3+ sites confined in TiO2 ultrathin layers. Sci China Chem 2021; 64: 953-958. [Article] [CrossRef] [Google Scholar]
- Chen X, Zhang X, Li YH, et al. Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation. Appl Catal B-Environ 2021; 281: 119516. [Article] [CrossRef] [Google Scholar]
- Zhang Y, Ran L, Zhang Y, et al. Two-dimensional defective boron-doped niobic acid nanosheets for robust nitrogen photofixation. ACS Nano 2021; 15: 17820-17830. [Article] [CrossRef] [PubMed] [Google Scholar]
- Han Q, Wu C, Jiao H, et al. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Adv Mater 2021; 33: 2008180. [Article] [Google Scholar]
- Xu J, Ju Z, Zhang W, et al. Efficient infrared-light-driven CO2 reduction over ultrathin metallic Ni-doped CoS2 nanosheets. Angew Chem Int Ed 2021; 60: 8705-8709. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shao W, Wang S, Zhu J, et al. In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Res 2021; 14: 4520-4527. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xue ZH, Luan D, Zhang H, et al. Single-atom catalysts for photocatalytic energy conversion. Joule 2022; 6: 92-133. [Article] [CrossRef] [Google Scholar]
- Gates BC. From catalyst preparation toward catalyst synthesis. J Catal 2015; 328: 72-74. [Article] [CrossRef] [Google Scholar]
- Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett 2010; 105: 136805. [Article] arxiv:1004.0546 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Xiao C, Huang P, et al. Regulating the charge and spin ordering of two-dimensional ultrathin solids for electrocatalytic water splitting. Chem 2018; 4: 1263-1283. [Article] [CrossRef] [Google Scholar]
- Li X, Liang L, Sun Y, et al. Ultrathin conductor enabling efficient IR light CO2 reduction. J Am Chem Soc 2019; 141: 423-430. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng Y, Zhang Z, Zhao K, et al. Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. J Colloid Interface Sci 2021; 583: 499-509. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Liang L, Li X, Sun Y, et al. Infrared light-driven CO2 overall splitting at room temperature. Joule 2018; 2: 1004-1016. [Article] [Google Scholar]
- Liu X, Zhang S, Guo S, et al. Advances of 2D bismuth in energy sciences. Chem Soc Rev 2020; 49: 263-285. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Wu J, Li X, Shi W, et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem Int Ed 2018; 57: 8719-8723. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li H, Shang J, Ai Z, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc 2015; 137: 6393-6399. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Dong X, Yuan Q, et al. In-situ synthesis of WO3−x/MoO3−x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2. Colloids Surface A 2021; 621: 126582. [Article] [CrossRef] [Google Scholar]
- Xie S, Zhang H, Liu G, et al. Tunable localized surface plasmon resonances in MoO3−x-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light. Chin J Catal 2020; 41: 1125-1131. [Article] [CrossRef] [Google Scholar]
- Huang P, Liu W, He Z, et al. Single atom accelerates ammonia photosynthesis. Sci China Chem 2018; 61: 1187-1196. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Fang Z, Yu G. Single atom catalyst towards ammonia synthesis at mild conditions. Sci China Chem 2018; 61: 1045-1046. [Article] [CrossRef] [Google Scholar]
- Mao Y, Wang P, Li L, et al. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew Chem Int Ed 2020; 59: 3685-3690. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li J, Wang J, Zhang G, et al. Enhanced molecular oxygen activation of Ni2+-doped BiO2−x nanosheets under UV, visible and near-infrared irradiation: Mechanism and DFT study. Appl Catal B-Environ 2018; 234: 167-177. [Article] [CrossRef] [Google Scholar]
- Hu X, Zhao H, Liang Y, et al. Energy level mediation of (BiO)2CO3 via Br doping for efficient molecular oxygen activation and ciprofloxacin photodegradation. Appl Catal B-Environ 2019; 258: 117966. [Article] [CrossRef] [Google Scholar]
- Hao S, Zhao X, Cheng Q, et al. A mini review of the preparation and photocatalytic properties of two-dimensional materials. Front Chem 2020; 8: 582146. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang Y, Zhang T, Ge Z, et al. Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al2O3. Carbon 2017; 124: 72-78. [Article] [CrossRef] [Google Scholar]
- Ding SS, Huang WQ, Yang YC, et al. Dual role of monolayer MoS2 in enhanced photocatalytic performance of hybrid MoS2/SnO2 nanocomposite. J Appl Phys 2016; 119: 205704. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun Y, Cheng H, Gao S, et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem Int Ed 2012; 51: 8727-8731. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun Y, Sun Z, Gao S, et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat Commun 2012; 3: 1057. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liang L, Lei F, Gao S, et al. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew Chem Int Ed 2015; 54: 13971-13974. [Article] [CrossRef] [Google Scholar]
- Abild-Pedersen F, Greeley J, Studt F, et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 2007; 99: 016105. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li X, Sun Y, Xu J, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat Energy 2019; 4: 690-699. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang S, Guan BY, Lu Y, et al. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J Am Chem Soc 2017; 139: 17305-17308. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jiao X, Li X, Jin X, et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J Am Chem Soc 2017; 139: 18044-18051. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Zhao Y, Waterhouse GIN, et al. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv Mater 2017; 29: 1703828. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hu S, Chen X, Li Q, et al. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Appl Catal B-Environ 2017; 201: 58-69. [Article] [CrossRef] [Google Scholar]
- Zhao Y, Zhao Y, Shi R, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv Mater 2019; 31: 1806482. [Article] [CrossRef] [Google Scholar]
- Zhang N, Li X, Ye H, et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc 2016; 138: 8928-8935. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ma M, Huang Z, Doronkin DE, et al. Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. Appl Catal B-Environ 2022; 300: 120695. [Article] [CrossRef] [Google Scholar]
- Liu X, Luo Y, Ling C, et al. Rare earth La single atoms supported MoO3−x for efficient photocatalytic nitrogen fixation. Appl Catal B-Environ 2022; 301: 120766. [Article] [CrossRef] [Google Scholar]
- Xue X, Chen R, Chen H, et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett 2018; 18: 7372-7377. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 2017; 117: 6225-6331. [Article] [Google Scholar]
- Li H, Huang JK, Shi Y, et al. Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors. Adv Mater Interfaces 2019; 6: 1900220. [Article] [CrossRef] [Google Scholar]
- Kallatt S, Das S, Chatterjee S, et al. Interlayer charge transport controlled by exciton-trion coherent coupling. npj 2D Mater Appl 2019; 3: 15. [Article] [CrossRef] [Google Scholar]
- Jiao X, Chen Z, Li X, et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2 S4 layers for boosted solar-driven CO2 reduction. J Am Chem Soc 2017; 139: 7586-7594. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang C, Tan Q, Li Q, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Appl Catal B-Environ 2020; 268: 118738. [Article] [CrossRef] [Google Scholar]
- Gao S, Gu B, Jiao X, et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J Am Chem Soc 2017; 139: 3438-3445. [Article] [CrossRef] [PubMed] [Google Scholar]
- Di J, Xia J, Chisholm MF, et al. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4 Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv Mater 2019; 31: 1807576. [Article] [Google Scholar]
- Koch SW, Kira M, Khitrova G, et al. Semiconductor excitons in new light. Nat Mater 2006; 5: 523-531. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Chen S, Yong D, et al. Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J Am Chem Soc 2017; 139: 4737-4742. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Yong D, Chen S, et al. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J Am Chem Soc 2018; 140: 1760-1766. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Sun X, Li D, et al. Boosting hot-electron generation: Exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J Am Chem Soc 2017; 139: 2468-2473. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Jiang S, Chen S, et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv Mater 2016; 28: 6940-6945. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sun X, Luo X, Zhang X, et al. Enhanced superoxide generation on defective surfaces for selective photooxidation. J Am Chem Soc 2019; 141: 3797-3801. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Cheng M, He Z, et al. Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew Chem Int Ed 2019; 58: 731-735. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Li J, Liu P, Tang Y, et al. Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal 2020; 10: 2431-2442. [Article] [CrossRef] [Google Scholar]
- Di J, Chen C, Yang SZ, et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat Commun 2019; 10: 2840. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang L, Bahnemann DW, Bian L, et al. Two-dimensional layered zinc silicate nanosheets with excellent photocatalytic performance for organic pollutant degradation and CO2 conversion. Angew Chem Int Ed 2019; 58: 8103-8108. [Article] [CrossRef] [PubMed] [Google Scholar]
- Shi Y, Li J, Mao C, et al. Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat Commun 2021; 12: 5923. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Han Q, Bai X, Man Z, et al. Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J Am Chem Soc 2019; 141: 4209-4213. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li J, Yang X, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020; 579: 368-374. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu Y, Wang H, Sun Y, et al. Photogenerated charge transfer via interfacial internal electric field for significantly improved photocatalysis in direct Z-scheme oxygen-doped carbon nitrogen/CoAl-layered double hydroxide heterojunction. Appl Catal B-Environ 2018; 227: 530-540. [Article] [CrossRef] [Google Scholar]
- Xu Q, Zhang L, Yu J, et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater Today 2018; 21: 1042-1063. [Article] [CrossRef] [Google Scholar]
- Zhang M, Lu M, Lang ZL, et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew Chem Int Ed 2020; 59: 6500-6506. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dou Y, Xu J, Ruan B, et al. Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater 2016; 6: 1501835. [Article] [CrossRef] [Google Scholar]
- Li J, Zhan G, Yu Y, et al. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat Commun 2016; 7: 11480. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yuan YJ, Ye ZJ, Lu HW, et al. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal 2015; 6: 532-541. [Article] [Google Scholar]
- Zhang Z, Huang J, Zhang M, et al. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl Catal B-Environ 2015; 163: 298-305. [Article] [CrossRef] [Google Scholar]
- Zhang J, Wang J, Zhang C, et al. Molecular simulation of C2H4/CO2/N2/O2 adsorption characteristics in lignite and anthracite. AIP Adv 2021; 11: 085205. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu X, Wang D, Hui S. Research progress of adsorption and photocatalysis of formaldehyde on TiO2/AC. Adsorpt Sci Technol, 2021; 2021: 8790974 [Google Scholar]
- Hage FS, Radtke G, Kepaptsoglou DM, et al. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 2020; 367: 1124-1127. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.