Issue
Natl Sci Open
Volume 2, Number 2, 2023
Special Topic: Chemistry Boosts Carbon Neutrality
Article Number 20220059
Number of page(s) 46
Section Chemistry
DOI https://doi.org/10.1360/nso/20220059
Published online 27 February 2023
  • Zhu C, Fu S, Shi Q, et al. Single-atom electrocatalysts. Angew Chem Int Ed 2017; 56: 13944-13960. [Article] [CrossRef] [Google Scholar]
  • Fei H, Dong J, Chen D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem Soc Rev 2019; 48: 5207-5241. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Dou X, Wang Y, Ciais P, et al. Near-real-time global gridded daily CO2 emissions. Innovation 2022; 3: 100182 [Google Scholar]
  • Zhao Q, Yu P, Mahendran R, et al. Global climate change and human health: Pathways and possible solutions. Eco-Environ Health 2022; 1: 53-62. [Article] [CrossRef] [Google Scholar]
  • Salemdeeb R, Saint R, Clark W, et al. A pragmatic and industry-oriented framework for data quality assessment of environmental footprint tools. Resour Environ Sust 2021; 3: 100019 [Google Scholar]
  • Yuan Y, Lu J. Demanding energy from carbon. Carbon Energy 2019; 1: 8-12. [Article] [CrossRef] [Google Scholar]
  • Chai Y, Lyu Z, Du H, et al. Recent progress on rational design of catalysts for fermentative hydrogen production. SusMat 2022; 2: 392-410. [Article] [CrossRef] [Google Scholar]
  • Chen JM. Carbon neutrality: Toward a sustainable future. Innovation 2021; 2: 100127 [NASA ADS] [Google Scholar]
  • Fu J, Li P, Lin Y, et al. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ Health 2022; 1: 259-279. [Article] [CrossRef] [Google Scholar]
  • Zhu W, Tackett BM, Chen JG, et al. Bimetallic electrocatalysts for CO2 reduction. Top Curr Chem (Z) 2018; 376: 41. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang X, Li P, Cao Y, et al. Techno-economic analysis and industrial application prospects of single-atom materials in CO2 catalysis. Chem J Chin U 2022; 43: 20220347 [Google Scholar]
  • Li D, Park EJ, Zhu W, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat Energy 2020; 5: 378-385. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lv H, Xi Z, Chen Z, et al. A new core/shell NiAu/Au nanoparticle catalyst with Pt-like activity for hydrogen evolution reaction. J Am Chem Soc 2015; 137: 5859-5862. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tian H, Zhu W, Shi Q, et al. Bimetallic IrxPb nanowire networks with enhanced electrocatalytic activity for the oxygen evolution reaction. J Mater Chem A 2022; 10: 11196-11204. [Article] [CrossRef] [Google Scholar]
  • Shi Q, Zhu C, Du D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 2019; 48: 3181-3192. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Shi Q, Fu S, Zhu C, et al. Metal-organic frameworks-based catalysts for electrochemical oxygen evolution. Mater Horiz 2019; 6: 684-702. [Article] [CrossRef] [Google Scholar]
  • Guo S, Zhang X, Zhu W, et al. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J Am Chem Soc 2014; 136: 15026-15033. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wei X, Luo X, Wu N, et al. Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy 2021; 84: 105817. [Article] [CrossRef] [Google Scholar]
  • Ding S, Lyu Z, Sarnello E, et al. A MnOx enhanced atomically dispersed iron-nitrogen-carbon catalyst for the oxygen reduction reaction. J Mater Chem A 2022; 10: 5981-5989. [Article] [CrossRef] [Google Scholar]
  • Ding S, Barr JA, Shi Q, et al. Engineering atomic single metal-FeN4Cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 2022; 16: 15165-15174. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yan D, Li H, Chen C, et al. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2018; 3: 1800331. [Article] [Google Scholar]
  • Yang Y, Yang Y, Pei Z, et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020; 3: 1442-1476. [Article] [CrossRef] [Google Scholar]
  • Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today 2019; 27: 69-90. [Article] [CrossRef] [Google Scholar]
  • Copéret C, Chabanas M, Petroff Saint-Arroman R, et al. Homogeneous and heterogeneous catalysis: Bridging the gap through surface organometallic chemistry. Angew Chem Int Ed 2003; 42: 156-181. [Article] [CrossRef] [Google Scholar]
  • Zhu C, Shi Q, Feng S, et al. Single-atom catalysts for electrochemical water splitting. ACS Energy Lett 2018; 3: 1713-1721. [Article] [CrossRef] [Google Scholar]
  • Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem 2018; 2: 65-81. [Article] [CrossRef] [Google Scholar]
  • Liu J. Catalysis by supported single metal atoms. ACS Catal 2017; 7: 34-59. [Article] [CrossRef] [Google Scholar]
  • Wu J, Xiong L, Zhao B, et al. Densely populated single atom catalysts. Small Methods 2020; 4: 1900540. [Article] [Google Scholar]
  • Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011; 3: 634-641. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc Chem Res 2013; 46: 1740-1748. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lin J, Wang A, Qiao B, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc 2013; 135: 15314-15317. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang YG, Mei D, Glezakou VA, et al. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat Commun 2015; 6: 6511. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu JC, Wang YG, Li J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J Am Chem Soc 2017; 139: 6190-6199. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wei S, Li A, Liu JC, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat Nanotech 2018; 13: 856-861. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lang R, Xi W, Liu JC, et al. Non defect-stabilized thermally stable single-atom catalyst. Nat Commun 2019; 10: 234. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Ren Y, Tang Y, Zhang L, et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat Commun 2019; 10: 4500. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Taylor HS. A theory of the catalytic surface. Proc R Soc Lond A 1925; 108: 105-111. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Rooney JJ, Webb G. The importance of π-bonded intermediates in hydrocarbon reactions on transition metal catalysts. J Catal 1964; 3: 488-501. [Article] [CrossRef] [Google Scholar]
  • Asakura K, Nagahiro H, Ichikuni N, et al. Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface. Appl Catal A-Gen 1999; 188: 313-324. [Article] [CrossRef] [Google Scholar]
  • Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003; 301: 935–938 [Google Scholar]
  • Zhang X, Shi H, Xu BQ. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew Chem Int Ed 2005; 44: 7132-7135. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hackett S, Brydson R, Gass M, et al. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew Chem Int Ed 2007; 46: 8593-8596. [Article] [CrossRef] [Google Scholar]
  • Zhang N, Li L, Huang X, et al. Research progress of single-atom catalysis. J Chin Soc Rare Earths 2018; 36: 513–532 [Google Scholar]
  • Nie L, Mei D, Xiong H, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017; 358: 1419-1423. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gu J, Jian M, Huang L, et al. Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat Nanotechnol 2021; 16: 1141-1149. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhu Y, Zhao K, Shi J, et al. Strain engineering of a defect-free, single-layer MoS2 substrate for highly efficient single-atom catalysis of CO oxidation. ACS Appl Mater Interfaces 2019; 11: 32887-32894. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yan J, Kong L, Ji Y, et al. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat Commun 2019; 10: 2149. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yang T, Song TT, Zhou J, et al. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy 2020; 68: 104304. [Article] [CrossRef] [Google Scholar]
  • Jiang K, Luo M, Peng M, et al. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat Commun 2020; 11: 2701. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhao D, Chen Z, Yang W, et al. MXene(Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J Am Chem Soc 2019; 141: 4086-4093. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Peng W, Luo M, Xu X, et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv Energy Mater 2020; 10: 2001364. [Article] [CrossRef] [Google Scholar]
  • Cheng Y, Dai J, Song Y, et al. Single molybdenum atom anchored on 2D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation. Nanoscale 2019; 11: 18132-18141. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wu Y, Jiao L, Luo X, et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019; 15: e1903108 [CrossRef] [Google Scholar]
  • Xu H, Zhao Y, Wang Q, et al. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev 2022; 451: 214261. [Article] [CrossRef] [Google Scholar]
  • Jiao L, Xu W, Yan H, et al. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal Chem 2019; 91: 11994-11999. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li X, Fan L, Xu B, et al. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction. ACS Appl Mater Interfaces 2021; 13: 53892-53903. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Bisen OY, Yadav AK, Nanda KK. Self-organized single-atom tungsten supported on the N-doped carbon matrix for durable oxygen reduction. ACS Appl Mater Interfaces 2020; 12: 43586-43595. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Guo J, Huo J, Liu Y, et al. Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: From synthesis to application. Small Methods 2019; 3: 1900159. [Article] [CrossRef] [Google Scholar]
  • Wang T, Zhao Q, Fu Y, et al. Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 2019; 3: 1900210. [Article] [CrossRef] [Google Scholar]
  • Peng Y, Lu B, Chen S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater 2018; 30: 1801995. [Article] [CrossRef] [Google Scholar]
  • Wang M, Wu Y, Li X, et al. Achieving a highly efficient oxygen reduction reaction via a molecular Fe single atom catalyst. Nanoscale 2022; 14: 8255-8259. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu K, Fu J, Zhu L, et al. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020; 12: 4903-4908. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Q, Guan J. Single-atom catalysts for electrocatalytic applications. Adv Funct Mater 2020; 30: 2000768. [Article] [CrossRef] [Google Scholar]
  • Shi Q, Zhu W, Zhong H, et al. Highly dispersed platinum atoms on the surface of AuCu metallic aerogels for enabling H2O2 production. ACS Appl Energy Mater 2019; 2: 7722-7727. [Article] [CrossRef] [Google Scholar]
  • Jiang M, Wang F, Yang F, et al. Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 2022; 93: 106793. [Article] [CrossRef] [Google Scholar]
  • Song X, Li N, Zhang H, et al. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl Mater Interfaces 2020; 12: 17519-17527. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li P, Zhao G, Cui P, et al. Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 2021; 83: 105850. [Article] [CrossRef] [Google Scholar]
  • Li Q, Chen W, Xiao H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater 2018; 30: 1800588. [Article] [Google Scholar]
  • Pan Y, Liu S, Sun K, et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew Chem Int Ed 2018; 57: 8614-8618. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Cai Y, Fu J, Zhou Y, et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat Commun 2021; 12: 586. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, Gao X, Dou M, et al. Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction. Small 2017; 13: 1604290. [Article] [CrossRef] [Google Scholar]
  • Wang Y, Shi R, Shang L, et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew Chem Int Ed 2020; 59: 13057-13062. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Sun Q, Ren W, Zhao Y, et al. Gram-scale synthesis of single-atom metal-N-CNT catalysts for highly efficient CO2 electroreduction. Chem Commun 2021; 57: 1514-1517. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci 2018; 11: 893-903. [Article] [CrossRef] [Google Scholar]
  • Fu S, Zhu C, Su D, et al. Porous carbon-hosted atomically dispersed iron-nitrogen moiety as enhanced electrocatalysts for oxygen reduction reaction in a wide range of pH. Small 2018; 14: 1703118. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Al-Zoubi T, Zhou Y, Yin X, et al. Preparation of nonprecious metal electrocatalysts for the reduction of oxygen using a low-temperature sacrificial metal. J Am Chem Soc 2020; 142: 5477-5481. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Xie X, Peng L, Yang H, et al. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv Mater 2021; 33: 2101038. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhu C, Shi Q, Xu BZ, et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MN x active moieties enable enhanced ORR performance. Adv Energy Mater 2018; 8: 1801956. [Article] [CrossRef] [Google Scholar]
  • Huang M, Deng B, Zhao X, et al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 2022; 16: 2110-2119. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu W, Zhang L, Liu X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J Am Chem Soc 2017; 139: 10790-10798. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu W, Zhang L, Yan W, et al. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci 2016; 7: 5758-5764. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang M, Yang W, Li X, et al. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett 2021; 6: 379-386. [Article] [CrossRef] [Google Scholar]
  • Wang Y, Shi C, Sha J, et al. Single-atom cobalt supported on nitrogen-doped three-dimensional carbon facilitating polysulfide conversion in lithium-sulfur batteries. ACS Appl Mater Interfaces 2022; 14: 25337-25347. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Cheng N, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 2016; 7: 13638. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Song Z, Zhu Y, Liu H, et al. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small 2020; 16: 2003096. [Article] [CrossRef] [Google Scholar]
  • Zhang L, Wang Q, Si R, et al. New insight of pyrrole-like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms. Small 2021; 17: 2004453. [Article] [CrossRef] [Google Scholar]
  • Yan H, Zhao X, Guo N, et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat Commun 2018; 9: 3197. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cao Y, Chen S, Luo Q, et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew Chem Int Ed 2017; 56: 12191-12196. [Article] [CrossRef] [Google Scholar]
  • Swain S, Altaee A, Saxena M, et al. A comprehensive study on heterogeneous single atom catalysis: Current progress, and challenges. Coordin Chem Rev 2022; 470: 214710 [CrossRef] [Google Scholar]
  • Qiu HJ, Du P, Hu K, et al. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv Mater 2019; 31: 1900843. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li X, Yang X, Liu L, et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal 2021; 11: 7450-7459. [Article] [CrossRef] [Google Scholar]
  • He Y, Li Y, Zhang J, et al. Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with single-Ni sites for efficient CO2 electroreduction. Nano Energy 2020; 77: 105010. [Article] [Google Scholar]
  • Xu J, Li R, Xu CQ, et al. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl Catal B-Environ 2021; 289: 120028. [Article] [CrossRef] [Google Scholar]
  • Yan B, Song H, Yang G. A facile and green large-scale fabrication of single atom catalysts for high photocatalytic H2 evolution activity. Chem Eng J 2022; 427: 131795. [Article] [CrossRef] [Google Scholar]
  • Ji D, Fan L, Li L, et al. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv Mater 2019; 31: 1808267. [Article] [Google Scholar]
  • Li JC, Qin X, Xiao F, et al. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nano Lett 2021; 21: 4508-4515. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hai X, Xi S, Mitchell S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat Nanotechnol 2022; 17: 174-181. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Qian K, Chen H, Li W, et al. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants. Environ Sci Technol 2021; 55: 7034-7043. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Wang X, Pan J, et al. Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew Chem Int Ed 2021; 60: 23154-23158. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yang S, Yu Y, Dou M, et al. Two-dimensional conjugated aromatic networks as high-site-density and single-atom electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 2019; 58: 14724-14730. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li C, Chen Z, Yi H, et al. Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew Chem Int Ed 2020; 59: 15902-15907. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lu X, Guo C, Zhang M, et al. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Res 2021; 14: 4347-4355. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wei H, Huang K, Zhang L, et al. Ice melting to release reactants in solution syntheses. Angew Chem Int Ed 2018; 57: 3354-3359. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fu W, Wan J, Zhang H, et al. Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat Commun 2022; 13: 5496. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yang J, Qiu Z, Zhao C, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew Chem Int Ed 2018; 57: 14095-14100. [Article] [CrossRef] [Google Scholar]
  • Qu Y, Li Z, Chen W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal 2018; 1: 781-786. [Article] [CrossRef] [Google Scholar]
  • Yang Z, Chen B, Chen W, et al. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat Commun 2019; 10: 3734. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat Catal 2022; 5: 300-310. [Article] [CrossRef] [Google Scholar]
  • Wang P, Ren Y, Wang R, et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat Commun 2020; 11: 1576. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, Chen Y, Zhou L, et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat Commun 2019; 10: 1657. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • He G, Yan M, Gong H, et al. Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts. Int J Extrem Manuf 2022; 4: 032003. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xi D, Li J, Low J, et al. Limiting the uncoordinated N species in M-Nx single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv Mater 2022; 34: 2104090. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Fei H, Dong J, Wan C, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater 2018; 30: 1802146. [Article] [CrossRef] [Google Scholar]
  • Kang S, Jeong YK, Mhin S, et al. Pulsed laser confinement of single atomic catalysts on carbon nanotube matrix for enhanced oxygen evolution reaction. ACS Nano 2021; 15: 4416-4428. [Article] [Google Scholar]
  • Jung JY, Jang J, Kim J, et al. Flash bottom-up arc synthesis of nanocarbons as a universal route for fabricating single-atom electrocatalysts. Small Methods 2021; 5: 2100239. [Article] [CrossRef] [Google Scholar]
  • Kosmala T, Baby A, Lunardon M, et al. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal-graphene interfaces. Nat Catal 2021; 4: 850-859. [Article] [Google Scholar]
  • Patera LL, Bianchini F, Africh C, et al. Real-time imaging of adatom-promoted graphene growth on nickel. Science 2018; 359: 1243-1246. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chen J, Wang T, Wang X, et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst. Adv Funct Mater 2022; 32: 2110174. [Article] [CrossRef] [Google Scholar]
  • Wang XX, Cullen DA, Pan YT, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv Mater 2018; 30: 1706758. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Shang Y, Duan X, Wang S, et al. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chin Chem Lett 2022; 33: 663-673. [Article] [CrossRef] [Google Scholar]
  • Pan Y, Lin R, Chen Y, et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc 2018; 140: 4218-4221. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhao L, Zhang Y, Huang LB, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat Commun 2019; 10: 1278. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liang X, Li Z, Xiao H, et al. Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on N-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chem Mater 2021; 33: 5542-5554. [Article] [CrossRef] [Google Scholar]
  • Peng L, Yang J, Yang Y, et al. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv Mater 2022; 34: 2202544. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhu W, Fu J, Liu J, et al. Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Appl Catal B-Environ 2020; 264: 118502. [Article] [CrossRef] [Google Scholar]
  • Li Y, Lu XF, Xi S, et al. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction. Angew Chem Int Ed 2022; 61: e202201491 [Google Scholar]
  • Wang B, Wang X, Zou J, et al. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett 2017; 17: 2003-2009. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li P, Jin Z, Fang Z, et al. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ Sci 2021; 14: 3522-3531. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Kramm UI, Herrmann-Geppert I, Behrends J, et al. On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J Am Chem Soc 2016; 138: 635-640. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Han J, Zhang S, Li Y, et al. Multi-scale promoting effects of lead for palladium catalyzed aerobic oxidative coupling of methylacrolein with methanol. Catal Sci Technol 2015; 5: 2076-2080. [Article] [CrossRef] [Google Scholar]
  • Zhang X, Zhang M, Deng Y, et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021; 589: 396-401. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Chen S, Li WH, Jiang W, et al. MOF encapsulating N-Heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew Chem Int Ed 2022; 61: e202114450 [Google Scholar]
  • Poerwoprajitno AR, Gloag L, Watt J, et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat Catal 2022; 5: 231-237. [Article] [CrossRef] [Google Scholar]
  • Gong YN, Zhong W, Li Y, et al. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J Am Chem Soc 2020; 142: 16723-16731. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li XF, Li QK, Cheng J, et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J Am Chem Soc 2016; 138: 8706-8709. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Han Y, Li QK, Ye K, et al. Impact of active site density on oxygen reduction reactions using monodispersed Fe-N-C single-atom catalysts. ACS Appl Mater Interfaces 2020; 12: 15271-15278. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Cao S, Wei S, Wei X, et al. Can N, S cocoordination promote single atom catalyst performance in CO2RR? Fe-N2S2 porphyrin versus Fe-N4 porphyrin. Small 2021; 17: 2100949. [Article] [CrossRef] [Google Scholar]
  • Jiang K, Siahrostami S, Akey AJ, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017; 3: 950-960. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Liu X, Jiao Y, Zheng Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J Am Chem Soc 2019; 141: 9664-9672. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li K, Zhang S, Zhang X, et al. Atomic tuning of single-atom Fe-N-C catalysts with phosphorus for robust electrochemical CO2 reduction. Nano Lett 2022; 22: 1557-1565. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal 2018; 1: 339-348. [Article] [CrossRef] [Google Scholar]
  • Choi C, Back S, Kim NY, et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal 2018; 8: 7517-7525. [Article] [CrossRef] [Google Scholar]
  • Yang W, Zhao M, Ding X, et al. The effect of coordination environment on the kinetic and thermodynamic stability of single-atom iron catalysts. Phys Chem Chem Phys 2020; 22: 3983-3989. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu JC, Xiao H, Li J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J Am Chem Soc 2020; 142: 3375-3383. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Qian SJ, Cao H, Chen JW, et al. Critical role of explicit inclusion of solvent and electrode potential in the electrochemical description of nitrogen reduction. ACS Catal 2022; 12: 11530-11540. [Article] [CrossRef] [Google Scholar]
  • Zhao H, Cao H, Zhang Z, et al. Modeling the potential-dependent kinetics of CO2 electroreduction on single-nickel atom catalysts with explicit solvation. ACS Catal 2022; 12: 11380-11390. [Article] [CrossRef] [Google Scholar]
  • Cao H, Zhang Z, Chen JW, et al. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal 2022; 12: 6606-6617. [Article] [CrossRef] [Google Scholar]
  • Chen JW, Zhang Z, Yan HM, et al. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nat Commun 2022; 13: 1734. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Deringer VL, Caro MA, Csányi G. Machine learning interatomic potentials as emerging tools for materials science. Adv Mater 2019; 31: 1902765. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Jin L, Ji Y, Wang H, et al. First-principles materials simulation and design for alkali and alkaline metal ion batteries accelerated by machine learning. Phys Chem Chem Phys 2022; 23: 21470-21483. [Article] [Google Scholar]
  • Huo J, Shen Z, Cao X, et al. Macro/micro-environment regulating carbon-supported single-atom catalysts for hydrogen/oxygen conversion reactions. Small 2022; 18: e2202394 [CrossRef] [Google Scholar]
  • Han SG, Ma DD, Zhu QL. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small Methods 2021; 5: e2100102 [CrossRef] [Google Scholar]
  • Hu XM, Hval HH, Bjerglund ET, et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal 2018; 8: 6255-6264. [Article] [CrossRef] [Google Scholar]
  • Tang C, Chen L, Li H, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J Am Chem Soc 2021; 143: 7819-7827. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhuo HY, Zhang X, Liang JX, et al. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem Rev 2020; 120: 12315-12341. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew Chem Int Ed 2018; 57: 1944-1948. [Article] [CrossRef] [Google Scholar]
  • Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J Am Chem Soc 2020; 142: 2404-2412. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Guo L, Tao L, et al. Defect-based single-atom electrocatalysts. Small Methods 2018; 3: 1800406. [Article] [Google Scholar]
  • Pan F, Li B, Sarnello E, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal 2020; 10: 10803-10811. [Article] [CrossRef] [Google Scholar]
  • Li R, Wang D. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv Energy Mater 2022; 12: 2103564. [Article] [Google Scholar]
  • Wang J, Huang Z, Liu W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 2017; 139: 17281-17284. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu C, Fu S, Song J, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017; 13: 1603407. [Article] [CrossRef] [Google Scholar]
  • Liu D, Li JC, Shi Q, et al. Atomically isolated iron atom anchored on carbon nanotubes for oxygen reduction reaction. ACS Appl Mater Interfaces 2019; 11: 39820-39826. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Q, Duan Z, Li M, et al. Atomic cobalt catalysts for the oxygen evolution reaction. Chem Commun 2020; 56: 794-797. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Li JC, Cheng M, Li T, et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. J Mater Chem A 2019; 7: 14478-14482. [Article] [CrossRef] [Google Scholar]
  • Niu X, Shi Q, Zhu W, et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron 2019; 142: 111495. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Narendra Kumar AV, Muthu Prabhu S, Shin WS, et al. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coord Chem Rev 2022; 467: 214613. [Article] [CrossRef] [Google Scholar]
  • Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem Soc Rev 2021; 50: 4993-5061. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Song RB, Zhu W, Fu J, et al. Electrode materials engineering in electrocatalytic CO2 reduction: energy input and conversion efficiency. Adv Mater 2020; 32: e1903796 [PubMed] [Google Scholar]
  • Tan X, Yu C, Ren Y, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ Sci 2021; 14: 765-780. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Lv JJ, Yin R, Zhou L, et al. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew Chem Int Ed 2022; 61: e202207252 [Google Scholar]
  • Wang G, Li X, Yang X, et al. Metal-based aerogels catalysts for electrocatalytic CO2 reduction. Chem Eur J 2022; 28: e202201834. [Article] [Google Scholar]
  • Du H, Fu J, Liu LX, et al. Recent progress in electrochemical reduction of carbon monoxide toward multi-carbon products. Mater Today 2022; 59: 182-199. [Article] [Google Scholar]
  • Liu LX, Li X, Cai Y, et al. Hierarchical S-modified Cu porous nanoflakes for efficient CO2 electroreduction to formate. Nanoscale 2022; 14: 13679-13688. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu W, Michalsky R, Metin Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 2013; 135: 16833-16836. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhu W, Zhang YJ, Zhang H, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 2014; 136: 16132-16135. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu J, Fu J, Zhou Y, et al. Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products. Nano Lett 2020; 20: 4823-4828. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yi J, Xie R, Xie Z, et al. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2 O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew Chem Int Ed 2020; 59: 23641-23648. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu LX, Zhou Y, Chang YC, et al. Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. Nano Energy 2020; 77: 105296. [Article] [Google Scholar]
  • Peng C, Luo G, Zhang J, et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat Commun 2021; 12: 1580. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • He W, Liberman I, Rozenberg I, et al. Electrochemically driven cation exchange enables the rational design of active CO2 reduction electrocatalysts. Angew Chem Int Ed 2020; 59: 8262-8269. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yang F, Liang C, Yu H, et al. Phosphorus-doped graphene aerogel as self-supported electrocatalyst for CO2-to-ethanol conversion. Adv Sci 2022; 9: e2202006 [CrossRef] [Google Scholar]
  • Sun Q, Jia C, Zhao Y, et al. Single atom-based catalysts for electrochemical CO2 reduction. Chin J Catal 2022; 43: 1547-1597. [Article] [Google Scholar]
  • Fu J, Wang Y, Liu J, et al. Low overpotential for electrochemically reducing CO2 to CO on nitrogen-doped graphene quantum dots-wrapped single-crystalline gold nanoparticles. ACS Energy Lett 2018; 3: 946-951. [Article] [CrossRef] [Google Scholar]
  • Liu LX, Fu J, Jiang LP, et al. Highly efficient photoelectrochemical reduction of CO2 at low applied voltage using 3D Co-Pi/BiVO4/SnO2 nanosheet array photoanodes. ACS Appl Mater Interfaces 2019; 11: 26024-26031. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tang T, Wang Z, Guan J. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv Funct Mater 2022; 32: 2111504. [Article] [Google Scholar]
  • Chen B, Li B, Tian Z, et al. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni-N4 sites. Adv Energy Mater 2021; 11: 2102152. [Article] [CrossRef] [Google Scholar]
  • Han N, Ding P, He L, et al. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater 2019; 10: 1902338. [Article] [Google Scholar]
  • Shang H, Wang T, Pei J, et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew Chem Int Ed 2020; 59: 22465-22469. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Du H, Liu LX, Cai Y, et al. In situ formed N-containing copper nanoparticles: A high-performance catalyst toward carbon monoxide electroreduction to multicarbon products with high faradaic efficiency and current density. Nanoscale 2022; 14: 7262-7268. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Han L, Song S, Liu M, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J Am Chem Soc 2020; 142: 12563-12567. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc 2019; 141: 12717-12723. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhao K, Nie X, Wang H, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat Commun 2020; 11: 2455. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Kortlever R, Shen J, Schouten KJP, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 2015; 6: 4073-4082. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang J, Gao Y, Kong H, et al. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem Soc Rev 2020; 49: 9154-9196. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zang W, Sun T, Yang T, et al. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Adv Mater 2021; 33: 2003846. [Article] [CrossRef] [Google Scholar]
  • Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun 2018; 9: 1460. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li Z, Wang Z, Xi S, et al. Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano 2021; 15: 7105-7113. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, Feng C, Li X, et al. In-situ generated high-valent iron single-atom catalyst for efficient oxygen evolution. Nano Lett 2021; 21: 4795-4801. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li J, Meng Y, Zhang L, et al. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv Funct Mater 2021; 31: 2103360. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Meng Y, Li JC, Zhao SY, et al. Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-air batteries. Appl Catal B-Environ 2021; 294: 120239. [Article] [CrossRef] [Google Scholar]
  • Kulkarni A, Siahrostami S, Patel A, et al. Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 2018; 118: 2302-2312. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Shah SSA, Najam T, Bashir MS, et al. Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Mater 2022; 45: 301-322. [Article] [CrossRef] [Google Scholar]
  • Wei YS, Zhang M, Zou R, et al. Metal-organic framework-based catalysts with single metal sites. Chem Rev 2020; 120: 12089-12174. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li JC, Wei Z, Liu D, et al. Dispersive single-atom metals anchored on functionalized nanocarbons for electrochemical reactions. Top Curr Chem (Z) 2019; 377: 4. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hai X, Zhao X, Guo N, et al. Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction. ACS Catal 2020; 10: 5862-5870. [Article] [CrossRef] [Google Scholar]
  • Xu H, Xi S, Li J, et al. Chemical design and synthesis of superior single-atom electrocatalysts via in situ polymerization. J Mater Chem A 2020; 8, 17683-17690 [CrossRef] [Google Scholar]
  • Sun T, Mitchell S, Li J, et al. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv Mater 2021; 33: 2003075. [Article] [CrossRef] [Google Scholar]
  • Shi Q, Hwang S, Yang H, et al. Supported and coordinated single metal site electrocatalysts. Mater Today 2020; 37: 93-111. [Article] [Google Scholar]
  • Sa YJ, Seo DJ, Woo J, et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction. J Am Chem Soc 2016; 138: 15046-15056. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li JC, Yang ZQ, Tang DM, et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Mater 2018; 10: e461. [Article] [CrossRef] [Google Scholar]
  • Cheng N, Li JC, Liu D, et al. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019; 15: e1901485 [CrossRef] [Google Scholar]
  • Li JC, Tang DM, Hou PX, et al. The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Commun 2018; 8: 1158-1166. [Article] [CrossRef] [Google Scholar]
  • Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed 2016; 55: 10800-10805. [Article] [CrossRef] [Google Scholar]
  • Zhang H, Hwang S, Wang M, et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 2017; 139: 14143-14149. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu D, Li J, Ding S, et al. 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 2020; 4: 1900827. [Article] [CrossRef] [Google Scholar]
  • Li JC, Xiao F, Zhong H, et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction. ACS Catal 2019; 9: 5929-5934. [Article] [CrossRef] [Google Scholar]
  • Ding S, Lyu Z, Fang L, et al. Single-atomic site catalyst with heme enzymes-like active sites for electrochemical sensing of hydrogen peroxide. Small 2021; 17: e2100664 [CrossRef] [Google Scholar]
  • Li JC, Maurya S, Kim YS, et al. Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping. ACS Catal 2020; 10: 2452-2458. [Article] [CrossRef] [Google Scholar]
  • Ding S, Lyu Z, Zhong H, et al. An ion-imprinting derived strategy to synthesize single-atom iron electrocatalysts for oxygen reduction. Small 2021; 17: e2004454 [CrossRef] [Google Scholar]
  • Li JC, Meng Y, Ma R, et al. Ionothermal-transformation strategy to synthesize hierarchically tubular porous single-iron-atom catalysts for high-performance zinc-air batteries. ACS Appl Mater Interfaces 2021; 13: 58576-58584. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang W, Xu X, Zhang C, et al. 3D space-confined pyrolysis of double-network aerogels containing In-Fe cyanogel and polyaniline: A new approach to hierarchically porous carbon with exclusive Fe-Nx active sites for oxygen reduction catalysis. Small Methods 2017; 1: 1700167. [Article] [CrossRef] [Google Scholar]
  • Song P, Luo M, Liu X, et al. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv Funct Mater 2017; 27: 1700802. [Article] [CrossRef] [Google Scholar]
  • Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal 2018; 1: 63-72. [Article] [Google Scholar]
  • Li F, Han GF, Noh HJ, et al. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ Sci 2018; 11: 2263-2269. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Tang C, Jiao Y, Shi B, et al. Coordination tunes selectivity: Two-electron oxygen reduction on high‐loading molybdenum single‐atom catalysts. Angew Chem Int Ed 2020; 59: 9171-9176. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Yuan K, Sfaelou S, Qiu M, et al. Synergetic contribution of boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett 2017; 3: 252-260. [Article] [Google Scholar]
  • Li JC, Zhong H, Xu M, et al. Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci China Mater 2020; 63: 965-971. [Article] [Google Scholar]
  • Gong H, Wei Z, Gong Z, et al. Low-Coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv Funct Mater 2021; 32: 2106886. [Article] [Google Scholar]
  • Zhang J, Yang H, Liu B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv Energy Mater 2020; 11: 2002473. [Article] [Google Scholar]
  • Tang C, Qiao SZ. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev 2019; 48: 3166-3180. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu D, Chen M, Du X, et al. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv Funct Mater 2020; 31: 2008983. [Article] [Google Scholar]
  • Ren Y, Yu C, Tan X, et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ Sci 2021; 14: 1176-1193. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Martín AJ, Shinagawa T, Pérez-Ramírez J. Electrocatalytic reduction of nitrogen: From Haber-Bosch to ammonia artificial leaf. Chem 2019; 5: 263-283 [Google Scholar]
  • Ma B, Zhao H, Li T, et al. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res 2020; 14: 555-569. [Article] [Google Scholar]
  • Han S, Wei X, Huang Y, et al. Tuning the activity and selectivity of nitrogen reduction reaction on double-atom catalysts by B doping: A density functional theory study. Nano Energy 2022; 99: 107363. [Article] [CrossRef] [Google Scholar]
  • Ying Y, Fan K, Qiao J, et al. Rational design of atomic site catalysts for electrocatalytic nitrogen reduction reaction: One step closer to optimum activity and selectivity. Electrochem Energy Rev 2022; 5: 6. [Article] [CrossRef] [Google Scholar]
  • Han L, Liu X, Chen J, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew Chem Int Ed 2019; 58: 2321-2325. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Mukherjee S, Yang X, Shan W, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 2020; 4: 1900821. [Article] [CrossRef] [Google Scholar]
  • Wang M, Liu S, Qian T, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun 2019; 10: 341. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Kuznetsov DA, Chen Z, Abdala PM, et al. Single-atom-substituted Mo2CTx:Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: Tracking the evolution of the MXene phase. J Am Chem Soc 2021; 143: 5771-5778. [Article] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.