Natl Sci Open
Volume 2, Number 2, 2023
Special Topic: Chemistry Boosts Carbon Neutrality
Article Number 20220064
Number of page(s) 14
Section Chemistry
Published online 28 February 2023
  • Franke R, Selent D, Börner A. Applied hydroformylation. Chem Rev 2012; 112: 5675-5732. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Börner A, Franke R. Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis. John Weinheim: Wiley & Sons, 2016 [CrossRef] [Google Scholar]
  • Li C, Wang W, Yan L, et al. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts. Front Chem Sci Eng 2018; 12: 113-123. [Article] [CrossRef] [Google Scholar]
  • Hanf S, Alvarado Rupflin L, Gläser R, et al. Current state of the art of the solid Rh-based catalyzed hydroformylation of short-chain olefins. Catalysts 2020; 10: 510. [Article] [CrossRef] [Google Scholar]
  • Liu B, Wang Y, Huang N, et al. Heterogeneous hydroformylation of alkenes by Rh-based catalysts. Chem 2022; 8: 2630-2658. [Article] [CrossRef] [Google Scholar]
  • Zhao K, Wang X, He D, et al. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catal Sci Technol 2022; 12: 4962-4982. [Article] [Google Scholar]
  • Gao P, Liang G, Ru T, et al. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat Commun 2021; 12: 4698. [Article] [Google Scholar]
  • Liu B, Huang N, Wang Y, et al. Promotion of inorganic phosphorus on Rh catalysts in styrene hydroformylation: Geometric and electronic effects. ACS Catal 2021; 11: 1787-1796. [Article] [CrossRef] [Google Scholar]
  • Huang N, Liu B, Lan X, et al. Promotion of diphosphine ligands (PPh2(CH2)PPh2, n = 1, 2, 3, 5, 6) for supported Rh/SiO2 catalysts in heterogeneous ethene hydroformylation. Mol Catal 2021; 511: 111736. [Article] [Google Scholar]
  • Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc Chem Res 2013; 46: 1740-1748. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem 2018; 2: 65-81. [Article] [Google Scholar]
  • Hülsey MJ, Zhang J, Yan N. Harnessing the wisdom in colloidal chemistry to make stable single-atom catalysts. Adv Mater 2018; 30: 1802304. [Article] [CrossRef] [Google Scholar]
  • Lang R, Du X, Huang Y, et al. Single-atom catalysts based on the metal-oxide interaction. Chem Rev 2020; 120: 11986-12043. [Article] [Google Scholar]
  • Li L, Chang X, Lin X, et al. Theoretical insights into single-atom catalysts. Chem Soc Rev 2020; 49: 8156-8178. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang Q, Guan J. Applications of single-atom catalysts. Nano Res 2022; 15: 38-70. [Article] [Google Scholar]
  • Liu J. Catalysis by supported single metal atoms. ACS Catal 2017; 7: 34-59. [Article] [CrossRef] [Google Scholar]
  • Ding S, Hülsey MJ, Pérez-Ramírez J, et al. Transforming energy with single-atom catalysts. Joule 2019; 3: 2897-2929. [Article] [Google Scholar]
  • Kaiser SK, Chen Z, Faust Akl D, et al. Single-atom catalysts across the periodic table. Chem Rev 2020; 120: 11703-11809. [Article] [CrossRef] [Google Scholar]
  • Wei H, Liu X, Wang A, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun 2014; 5: 5634. [Article] [Google Scholar]
  • Zhang B, Asakura H, Zhang J, et al. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem 2016; 128: 8459-8463. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu W, Chen Y, Qi H, et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew Chem 2018; 130: 7189-7193. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • He X, He Q, Deng Y, et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat Commun 2019; 10: 3663. [Article] [Google Scholar]
  • Zhang B, Sun G, Ding S, et al. Atomically dispersed Pt1-polyoxometalate catalysts: How does metal-support interaction affect stability and hydrogenation activity?. J Am Chem Soc 2019; 141: 8185-8197. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang L, Zhou M, Wang A, et al. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem Rev 2019; 120: 683-733. [Article] [Google Scholar]
  • Long X, Li Z, Gao G, et al. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat Commun 2020; 11: 4074. [Article] [Google Scholar]
  • Yang F, Ding S, Song H, et al. Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene. Sci China Mater 2020; 63: 982-992. [Article] [Google Scholar]
  • Ma Y, Zhang X, Cao L, et al. Effects of the morphology and heteroatom doping of CeO2 support on the hydrogenation activity of Pt single-atoms. Catal Sci Technol 2021; 11: 2844-2851. [Article] [Google Scholar]
  • Wang L, Zhu C, Xu M, et al. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J Am Chem Soc 2021; 143: 18854-18858. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hülsey MJ, Fung V, Hou X, et al. Hydrogen spillover and its relation to hydrogenation: Observations on structurally defined single-atom sites. Angew Chem Int Ed 2022; 61: e202208237. [Article] [Google Scholar]
  • Hung SF, Xu A, Wang X, et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat Commun 2022; 13: 819. [Article] [Google Scholar]
  • Ji K, Xu M, Xu SM, et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew Chem Int Ed 2022; 61: e202209849. [Article] [Google Scholar]
  • Zhao E, Li M, Xu B, et al. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source. Angew Chem Int Ed 2022; 61: e202207410. [Article] [Google Scholar]
  • Zhao L, Qin X, Zhang X, et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv Mater 2022; 34: 2110455. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xie J, Yin K, Serov A, et al. Selective aerobic oxidation of alcohols over atomically-dispersed non-precious metal catalysts. ChemSusChem 2017; 10: 359-362. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li T, Liu F, Tang Y, et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew Chem Int Ed 2018; 57: 7795-7799. [Article] [CrossRef] [Google Scholar]
  • Luo L, Luo J, Li H, et al. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat Commun 2021; 12: 1218. [Article] [Google Scholar]
  • Shang Y, Xu X, Gao B, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem Soc Rev 2021; 50: 5281-5322. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Jiao L, Zheng L, et al. PdBi single-atom alloy aerogels for efficient ethanol oxidation. Adv Funct Mater 2021; 31: 2103465. [Article] [CrossRef] [Google Scholar]
  • Zhang Z, Liu J, Wang J, et al. Single-atom catalyst for high-performance methanol oxidation. Nat Commun 2021; 12: 5235. [Article] [Google Scholar]
  • Su X, Yang XF, Huang Y, et al. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc Chem Res 2018; 52: 656-664. [Article] [Google Scholar]
  • Gong L, Zhang D, Lin CY, et al. Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion. Adv Energy Mater 2019; 9: 1902625. [Article] [CrossRef] [Google Scholar]
  • Millet MM, Algara-Siller G, Wrabetz S, et al. Ni single atom catalysts for CO2 activation. J Am Chem Soc 2019; 141: 2451-2461. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhao C, Wang Y, Li Z, et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 2019; 3: 584-594. [Article] [Google Scholar]
  • Li M, Wang H, Luo W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater 2020; 32: 2001848. [Article] [CrossRef] [Google Scholar]
  • Vijay S, Ju W, Brückner S, et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat Catal 2021; 4: 1024-1031. [Article] [Google Scholar]
  • Zheng T, Liu C, Guo C, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol 2021; 16: 1386-1393. [Article] [Google Scholar]
  • Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011; 3: 634-641. [Article] [Google Scholar]
  • Qiao B, Liang JX, Wang A, et al. Single atom gold catalysts for low-temperature CO oxidation. Chin J Catal 2016; 37: 1580-1586. [Article] [CrossRef] [Google Scholar]
  • Nie L, Mei D, Xiong H, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017; 358: 1419-1423. [Article] [Google Scholar]
  • Zhang B, Asakura H, Yan N. Atomically dispersed rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Ind Eng Chem Res 2017; 56: 3578-3587. [Article] [CrossRef] [Google Scholar]
  • Zhang Z, Zhu Y, Asakura H, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat Commun 2017; 8: 16100. [Article] [Google Scholar]
  • Hülsey MJ, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun 2019; 10: 1330. [Article] [Google Scholar]
  • Hülsey MJ, Sun G, Sautet P, et al. Observing single-atom catalytic sites during reactions with electrospray ionization mass spectrometry. Angew Chem Int Ed 2021; 60: 4764-4773. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Hülsey MJ, Sun G, Sautet P, et al. Observing single-atom catalytic sites during reactions with electrospray ionization mass spectrometry. Angew Chem 2021; 133: 4814-4823. [Article] [CrossRef] [Google Scholar]
  • Muravev V, Spezzati G, Su YQ, et al. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat Catal 2021; 4: 469-478. [Article] [Google Scholar]
  • Hülsey MJ, Baskaran S, Ding S, et al. Identifying key descriptors for the single-atom catalyzed CO oxidation. CCS Chem 2022; 4: 3296-3308. [Article] [CrossRef] [Google Scholar]
  • Lu Y, Zhang Z, Wang H, et al. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Appl Catal B-Environ 2021; 292: 120162. [Article] [CrossRef] [Google Scholar]
  • De S, Burange AS, Luque R. Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green Chem 2022; 24: 2267-2286. [Article] [CrossRef] [Google Scholar]
  • Ge R, Wang Y, Li Z, et al. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew Chem Int Ed 2022; 61: e202200211. [Article] [Google Scholar]
  • Lang R, Li T, Matsumura D, et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew Chem Int Ed 2016; 55: 16054-16058. [Article] [CrossRef] [Google Scholar]
  • Wang L, Zhang W, Wang S, et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat Commun 2016; 7: 14036. [Article] [Google Scholar]
  • Amsler J, Sarma BB, Agostini G, et al. Prospects of heterogeneous hydroformylation with supported single atom catalysts. J Am Chem Soc 2020; 142: 5087-5096. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li T, Chen F, Lang R, et al. Styrene hydroformylation with in situ hydrogen: Regioselectivity control by coupling with the low-temperature water-gas shift reaction. Angew Chem Int Ed 2020; 59: 7430-7434. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Qin T, Dang Y, Lin T, et al. Single-atom Ru catalyst for selective synthesis of 3-pentanone via ethylene hydroformylation. Green Chem 2021; 23: 9038-9047. [Article] [CrossRef] [Google Scholar]
  • Wei X, Jiang Y, Ma Y, et al. Ultralow-loading and high-performing ionic liquid-immobilizing rhodium single-atom catalysts for hydroformylation. Chem Eur J 2022; 28: e202200374. [Article] [Google Scholar]
  • Tang P, Paganelli S, Carraro F, et al. Postsynthetic metalated MOFs as atomically dispersed catalysts for hydroformylation reactions. ACS Appl Mater Interfaces 2020; 12: 54798-54805. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Ding S, Hülsey MJ, An H, et al. Ionic liquid-stabilized single-atom Rh catalyst against leaching. CCS Chem 2021; 3: 1814-1822. [Article] [CrossRef] [Google Scholar]
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996; 54: 11169-11186. [Article] [Google Scholar]
  • Gajdoš M, Hummer K, Kresse G, et al. Linear optical properties in the projector-augmented wave methodology. Phys Rev B 2006; 73: 045112. [Article] [Google Scholar]
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996; 77: 3865-3868. [Article] [Google Scholar]
  • Blöchl PE. Projector augmented-wave method. Phys Rev B 1994; 50: 17953-17979. [Article] [Google Scholar]
  • Mizuno N, Misono M. Heterogeneous catalysis. Chem Rev 1998; 98: 199-218. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Talib SH, Yu X, Yu Q, et al. Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation. Sci China Mater 2020; 63: 1003-1014. [Article] [Google Scholar]
  • Brown GM, Noe-Spirlet MR, Busing WR, et al. Dodecatungstophosphoric acid hexahydrate, (H5O2+)3(PW12O403−). The true structure of Keggin’s ‘pentahydrate’ from single-crystal X-ray and neutron diffraction data. Acta Crystlogr B Struct Crystlogr Cryst Chem 1977; 33: 1038-1046. [Article] [CrossRef] [Google Scholar]
  • Yates Jr. JT, Duncan TM, Worley SD, et al. Infrared spectra of chemisorbed CO on Rh. J Chem Phys 1979; 70: 1219-1224. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ding S, Guo Y, Hülsey MJ, et al. Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 2019; 5: 3207-3219. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.