Issue |
Natl Sci Open
Volume 2, Number 4, 2023
Special Topic: Two-dimensional Materials and Devices
|
|
---|---|---|
Article Number | 20220068 | |
Number of page(s) | 17 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20220068 | |
Published online | 03 July 2023 |
- Chen Y, Hong S, Ko H, et al. Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch. Appl Phys Lett 2001; 78: 3352-3354. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Matthews J, Blakeslee A. Defects in epitaxial multilayers. I. Misfit dislocations. J Cryst Growth 1974; 27: 118–125 [NASA ADS] [Google Scholar]
- Li G, Wang W, Yang W, et al. GaN-based light-emitting diodes on various substrates: a critical review. Rep Prog Phys 2016; 79: 056501. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chung K, Lee CH, Yi GC. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 2010; 330: 655-657. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kobayashi Y, Kumakura K, Akasaka T, et al. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 2012; 484: 223-227. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim J, Bayram C, Park H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat Commun 2014; 5: 4836. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kim Y, Cruz SS, Lee K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017; 544: 340-343. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Zhang X, Dou Z, et al. High-brightness blue light-emitting diodes enabled by a directly grown graphene buffer layer. Adv Mater 2018; 30: 1801608. [Article] [Google Scholar]
- Chen Z, Liu Z, Wei T, et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv Mater 2019; 31: 1807345. [Article] [Google Scholar]
- Chen Z, Gao P, Liu Z. Graphene-based LED: from principle to devices. Acta Physico-Chim Sin 2020; 36: 1907004. [Article] [Google Scholar]
- Liang D, Wei T, Wang J, et al. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy 2020; 69: 104463. [Article] [Google Scholar]
- Wang S, Sun C, Shao Y, et al. Self-supporting GaN nanowires/graphite paper: novel high-performance flexible supercapacitor electrodes. Small 2017; 13: 1603330. [Article] [CrossRef] [Google Scholar]
- Kim Y, Suh J, Shin J, et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 2022; 377: 859–864 [CrossRef] [PubMed] [Google Scholar]
- Kum H, Lee D, Kong W, et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat Electron 2019; 2: 439-450. [Article] [CrossRef] [Google Scholar]
- Bae SH, Kum H, Kong W, et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat Mater 2019; 18: 550-560. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Matthews J, Blakeslee A. Defects in epitaxial multilayers. I. Misfit dislocations. J Cryst Growth 1974; 27: 118–125 [NASA ADS] [Google Scholar]
- Morelli DT, Heremans JP, Slack GA. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys Rev B 2002; 66: 195304. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Narayan J. Recent progress in thin film epitaxy across the misfit scale (2011 Acta Gold Medal Paper). Acta Mater 2013; 61: 2703-2724. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Motoki K, Okahisa T, Matsumoto N, et al. Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate. Jpn J Appl Phys 2001; 40: 140–143 [Google Scholar]
- Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010; 327: 1603-1607. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Peng M, Liu Y, Yu A, et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 2016; 10: 1572-1579. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen J, Oh SK, Nabulsi N, et al. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 2019; 57: 670-679. [Article] [Google Scholar]
- Chen XD, Chen Z, Jiang WS, et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv Mater 2017; 29: 1603428. [Article] [CrossRef] [Google Scholar]
- Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon 2010; 48: 2127-2150. [Article] [CrossRef] [Google Scholar]
- Jo G, Choe M, Lee S, et al. The application of graphene as electrodes in electrical and optical devices. Nanotechnology 2012; 23: 112001. [Article] [Google Scholar]
- Petravic M, Peter R, Kavre I, et al. Decoration of nitrogen vacancies by oxygen atoms in boron nitride nanotubes. Phys Chem Chem Phys 2010; 12: 15349-15353. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lin Y, Connell JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 2012; 4: 6908-6939. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang K, Feng Y, Wang F, et al. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 2017; 5: 11992-12022. [Article] [CrossRef] [Google Scholar]
- Lim ZH, Manzo S, Strohbeen PJ, et al. Selective area epitaxy of GaAs films using patterned graphene on Ge. Appl Phys Lett 2022; 120: 051603. [Article] [CrossRef] [Google Scholar]
- Du D, Jung T, Manzo S, et al. Controlling the balance between remote, pinhole, and van der Waals epitaxy of heusler films on graphene/sapphire. Nano Lett. 2022; 22: 8647–8653 [Google Scholar]
- Han N, Viet Cuong T, Han M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat Commun 2013; 4: 1452. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Li X, Shao Y, et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. ACS Appl Mater Interfaces 2015; 7: 4504-4510. [Article] [Google Scholar]
- Paton KR, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 2014; 13: 624-630. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen XD, Liu ZB, Zheng CY, et al. High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon 2013; 56: 271-278. [Article] [CrossRef] [Google Scholar]
- Yoo H, Chung K, Choi YS, et al. Microstructures of GaN thin films grown on graphene layers. Adv Mater 2012; 24: 515-518. [Article] [Google Scholar]
- Yoo H, Chung K, In Park S, et al. Microstructural defects in GaN thin films grown on chemically vapor-deposited graphene layers. Appl Phys Lett 2013; 102: 051908. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li Y, Zhao Y, Wei T, et al. Van der Waals epitaxy of GaN-based light-emitting diodes on wet-transferred multilayer graphene film. Jpn J Appl Phys 2017; 56: 085506. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liang X, Sperling BA, Calizo I, et al. Toward clean and crackless transfer of graphene. ACS Nano 2011; 5: 9144-9153. [Article] [Google Scholar]
- Lin Y, Jin C, Lee J, et al. Clean transfer of graphene for isolation and suspension. ACS Nano 2011; 5: 2362–2368 [CrossRef] [PubMed] [Google Scholar]
- Qi Y, Wang Y, Pang Z, et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J Am Chem Soc 2018; 140: 11935-11941. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Chang H, Cheng T, et al. Direct growth of nanopatterned graphene on sapphire and its application in light emitting diodes. Adv Funct Mater 2020; 30: 2001483. [Article] [Google Scholar]
- Chen Z, Xie C, Wang W, et al. Direct growth of wafer-scale highly oriented graphene on sapphire. Sci Adv 2021; 7: eabk0115. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu B, Chen Q, Chen Z, et al. Atomic mechanism of strain alleviation and dislocation reduction in highly mismatched remote heteroepitaxy using a graphene interlayer. Nano Lett 2022; 22: 3364-3371. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- So F, Forrest S. Evidence for exciton confinement in crystalline organic multiple quantum wells. Phys Rev Lett 1991; 66: 20 [Google Scholar]
- Kong W, Li H, Qiao K, et al. Polarity governs atomic interaction through two-dimensional materials. Nat Mater 2018; 17: 999-1004. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kim H, Lu K, Liu Y, et al. Impact of 2D-3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 2021; 15: 10587-10596. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chang H, Chen Z, Li W, et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett 2019; 114: 091107. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Dou Z, Chen Z, Li N, et al. Atomic mechanism of strong interactions at the graphene/sapphire interface. Nat Commun 2019; 10: 5013. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jiang J, Sun X, Chen X, et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat Commun 2019; 10: 4145. [Article] [Google Scholar]
- Liu F, Zhang Z, Rong X, et al. Graphene-assisted epitaxy of nitrogen lattice polarity GaN films on non-polar sapphire substrates for green light emitting diodes. Adv Funct Mater 2020; 30: 2001283. [Article] [Google Scholar]
- Liu F, Wang T, Zhang Z, et al. Lattice polarity manipulation of quasi-vdW epitaxial GaN films on graphene through interface atomic configuration. Adv Mater 2022; 34: 2106814. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao C, Ng TK, Tseng CC, et al. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv 2017; 7: 26665-26672. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Tangi M, Mishra P, Tseng CC, et al. Band alignment at GaN/single-layer WSe2 interface. ACS Appl Mater Interfaces 2017; 9: 9110-9117. [Article] [Google Scholar]
- Zhang S, Liu B, Ren F, et al. Graphene-nanorod enhanced quasi-van der Waals epitaxy for high indium composition nitride films. Small 2021; 17: 2100098. [Article] [CrossRef] [Google Scholar]
- Jeong J, Wang Q, Cha J, et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci Adv 2020; 6: eaaz5180. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chang H, Chen Z, Liu B, et al. Quasi-2D growth of aluminum nitride film on graphene for boosting deep ultraviolet light-emitting diodes. Adv Sci 2020; 7: 2001272. [Article] [Google Scholar]
- Chang H, Liu Z, Yang S, et al. Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light Sci Appl 2022; 11: 88 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kum HS, Lee H, Kim S, et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 2020; 578: 75-81. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Manzo S, Strohbeen PJ, Lim ZH, et al. Pinhole-seeded lateral epitaxy and exfoliation of GaSb films on graphene-terminated surfaces. Nat Commun 2022; 13: 4014. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kim H, Lee S, Shin J, et al. Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nat Nanotechnol 2022; 17: 1054-1059. [Article] [CrossRef] [PubMed] [Google Scholar]
- Koma A, Sunouchi K, Miyajima T. Fabrication and characterization of heterostructures with subnanometer thickness. MicroElectron Eng 1984; 2: 129-136. [Article] [CrossRef] [Google Scholar]
- Koma A, Sunouchi K, Miyajima T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J Vacuum Sci Tech B: Microelectron Process Phenomena 1985; 3: 724 [NASA ADS] [CrossRef] [Google Scholar]
- Sealy C. Graphene lattice guides thin film nitride growth. Nano Today 2021; 40: 101275 [Google Scholar]
- Wu Q, Guo Y, Sundaram S, et al. Exfoliation of AlN film using two-dimensional multilayer hexagonal BN for deep-ultraviolet light-emitting diodes. Appl Phys Express 2019; 12: 015505. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ren F, Liu B, Chen Z, et al. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Sci Adv 2021; 7: eabf5011. [Article] [CrossRef] [PubMed] [Google Scholar]
- Feng Y, Yang X, Zhang Z, et al. Epitaxy of single-crystalline GaN film on CMOS-compatible Si(100) substrate buffered by graphene. Adv Funct Mater 2019; 29: 1905056. [Article] [Google Scholar]
- Yin Y, Liu B, Chen Q, et al. Continuous single-crystalline GaN film grown on WS2-glass Wafer. Small 2022; 18: e2202529 [CrossRef] [Google Scholar]
- Gupta P, Rahman AA, Subramanian S, et al. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth. Sci Rep 2016; 6: 23708. [Article] [Google Scholar]
- Hossain E, Rahman AA, Shah AP, et al. Large-area, thermally-sulfurized WS2 thin films: control of growth direction and use as a substrate for GaN epitaxy. Semicond Sci Technol 2020; 35: 035011. [Article] [CrossRef] [Google Scholar]
- Heilmann M, Munshi AM, Sarau G, et al. Vertically oriented growth of GaN nanorods on Si using graphene as an atomically thin buffer layer. Nano Lett 2016; 16: 3524-3532. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Utama MIB, Belarre FJ, Magen C, et al. Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. Nano Lett 2012; 12: 2146-2152. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Mun DH, Bae H, Bae S, et al. Stress relaxation of GaN microstructures on a graphene-buffered Al2O3 substrate. Phys Status Solidi RRL 2014; 8: 341-344. [Article] [CrossRef] [Google Scholar]
- Li T, Liu C, Zhang Z, et al. Understanding the growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite. Nanoscale Res Lett 2018; 13: 130 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chung K, Yoo H, Hyun JK, et al. Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots. Adv Mater 2016; 28: 7688-7694. [Article] [Google Scholar]
- Chung K, Beak H, Tchoe Y, et al. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes. APL Mater 2014; 2: 092512. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liudi Mulyo A, Rajpalke MK, Kuroe H, et al. Vertical GaN nanocolumns grown on graphene intermediated with a thin AlN buffer layer. Nanotechnology 2019; 30: 015604. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kumaresan V, Largeau L, Madouri A, et al. Epitaxy of GaN nanowires on graphene. Nano Lett 2016; 16: 4895-4902. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Fernández-Garrido S, Ramsteiner M, Gao G, et al. Molecular beam epitaxy of GaN nanowires on epitaxial graphene. Nano Lett 2017; 17: 5213-5221. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ci H, Chang H, Wang R, et al. Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer. Adv Mater 2019; 31: 1901624. [Article] [CrossRef] [Google Scholar]
- Long H, Dai J, Zhang Y, et al. High quality 10.6 μm AlN grown on pyramidal patterned sapphire substrate by MOCVD. Appl Phys Lett 2019; 114: 042101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shim J, Bae S, Kong W, et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 2018; 362: 665–670 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Qiao K, Liu Y, Kim C, et al. Graphene buffer layer on SiC as a release layer for high-quality freestanding semiconductor membranes. Nano Lett 2021; 21: 4013-4020. [Article] [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Bae SH, Lu K, Han Y, et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat Nanotechnol 2020; 15: 272-276. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yeon H, Lee H, Kim Y, et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci Adv 2021; 7: eabg8459. [Article] [CrossRef] [PubMed] [Google Scholar]
- Glavin NR, Chabak KD, Heller ER, et al. Flexible gallium nitride for high-performance, strainable radio-frequency devices. Adv Mater 2017; 29: 1701838. [Article] [Google Scholar]
- Jia Y, Ning J, Zhang J, et al. Transferable GaN enabled by selective nucleation of AlN on graphene for high-brightness violet light-emitting diodes. Adv Opt Mater 2019; 8: 1901632. [Article] [Google Scholar]
- Yan Z, Liu G, Khan JM, et al. Graphene quilts for thermal management of high-power GaN transistors. Nat Commun 2012; 3: 827. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jo G, Choe M, Cho CY, et al. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 2010; 21: 175201. [Article] [Google Scholar]
- Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009; 457: 706-710. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Høiaas IM, Liudi Mulyo A, Vullum PE, et al. GaN/AlGaN nanocolumn ultraviolet light-emitting diode using double-layer graphene as substrate and transparent electrode. Nano Lett 2019; 19: 1649-1658. [Article] [CrossRef] [PubMed] [Google Scholar]
- Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotech 2012; 7: 363-368. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huang B, Xiang H, Yu J, et al. Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. Phys Rev Lett 2012; 108: 206802. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ruzmetov D, Zhang K, Stan G, et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 2016; 10: 3580-3588. [Article] [Google Scholar]
- Al Balushi ZY, Wang K, Ghosh RK, et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater 2016; 15: 1166-1171. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.