Natl Sci Open
Volume 2, Number 4, 2023
Special Topic: Two-dimensional Materials and Devices
Article Number 20220071
Number of page(s) 11
Section Information Sciences
Published online 29 June 2023
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444 [Google Scholar]
  • Wulf W, McKee S. Hitting the memory wall: implications of the obvious. Comput Architect News 1996; 23: 20–24 [Google Scholar]
  • Wong HSP, Salahuddin S. Memory leads the way to better computing. Nat Nanotech 2015; 10: 191-194. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Sun X, Zhu C, Yi J, et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat Electron 2022; 5: 752-760. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Horowitz M. Computing’s energy problem (and what we can do about it). In: Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, San Francisco, 2014 [Google Scholar]
  • Li S, Niu D, Malladi KT, et al. DRISA: A DRAM-based reconfigurable in-situ accelerator. In: Proceedings of the 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, Boston, 2017 [Google Scholar]
  • Chen Z, Chen X, Gu J. A 65 nm 3T dynamic analog RAM-based computing-in-memory macro and CNN accelerator with retention enhancement, adaptive analog sparsity and 44 TOPS/W system energy efficiency. In: Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, San Francisco, 2021 [Google Scholar]
  • Shin H, Sim J, Lee D, et al. A PVT-robust customized 4T embedded DRAM cell array for accelerating binary neural networks. In: Proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, Westminster, 2019 [Google Scholar]
  • Yu C, Yoo T, Kim H, et al. A logic-compatible eDRAM compute-in-memory with embedded ADCs for processing neural networks. IEEE Trans Circuits Syst I 2021; 68: 667-679. [Article] [CrossRef] [Google Scholar]
  • Graves A, Wayne G, Reynolds M, et al. Hybrid computing using a neural network with dynamic external memory. Nature 2016; 538: 471-476. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang P, Xu F, Wang B, et al. Three-dimensional nand flash for vector-matrix multiplication. IEEE Trans VLSI Syst 2019; 27: 988-991. [Article] [CrossRef] [Google Scholar]
  • Wu L, Wang A, Shi J, et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat Nanotechnol 2021; 16: 882-887. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu L, Liu C, Jiang L, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat Nanotechnol 2021; 16: 874-881. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Ielmini D, Wong HSP. In-memory computing with resistive switching devices. Nat Electron 2018; 1: 333-343. [Article] [CrossRef] [Google Scholar]
  • Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature 2020; 577: 641-646. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hickmott TW. Low-frequency negative resistance in thin anodic oxide films. J Appl Phys 1962; 33: 2669–2682 [CrossRef] [Google Scholar]
  • Bichler O, Suri M, Querlioz D, et al. Visual pattern extraction using energy-efficient “2-PCM synapse” neuromorphic architecture. IEEE Trans Electron Devices 2012; 59: 2206-2214. [Article] [Google Scholar]
  • Wright CD, Hosseini P, Diosdado JAV. Beyond von-neumann computing with nanoscale phase-change memory devices. Adv Funct Mater 2013; 23: 2248-2254. [Article] [Google Scholar]
  • Kim KM, Xu N, Shao X, et al. Single-cell stateful logic using a dual-bit memristor. Phys Status Solidi (RRL)-Rapid Res Lett 2019; 13: 1800629 [NASA ADS] [CrossRef] [Google Scholar]
  • Sebastian A, Le Gallo M, Khaddam-Aljameh R, et al. Memory devices and applications for in-memory computing. Nat Nanotechnol 2020; 15: 529-544. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sim J, Seol H, Kim LS. NID: Processing binary convolutional neural network in commodity DRAM. In: Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, San Diego, 2018 [Google Scholar]
  • Saito D, Doevenspeck J, Cosemans S, et al. IGZO-based compute cell for analog in-memory computing—DTCO analysis to enable ultralow-power AI at edge. IEEE Trans Electron Devices 2020; 67: 4616-4620. [Article] [Google Scholar]
  • Cosemans S, Verhoef B, Doevenspeck J, et al. Towards 10000TOPS/W DNN inference with analog in-memory computing—A circuit blueprint, device options and requirements. In: Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, San Francisco, 2019 [Google Scholar]
  • Deng Q, Jiang L, Zhang YT, et al. DrAcc: a DRAM based accelerator for accurate CNN inference. In: Proceedings of the 2018 55TH ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, San Francisco, 2018 [Google Scholar]
  • Luo P, Liu C, Lin J, et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat Electron 2022; 5: 849-858. [Article] [CrossRef] [Google Scholar]
  • Parrish KN, Akinwande D. Impact of contact resistance on the transconductance and linearity of graphene transistors. Appl Phys Lett 2011; 98: 183505. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Wang Y, Tang H, Xie Y, et al. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat Commun 2021; 12: 3347. [Article] [Google Scholar]
  • Zhou Y, Wang Y, Zhuge F, et al. A Reconfigurable Two‐WSe2 ‐Transistor Synaptic Cell for Reinforcement Learning. Adv Mater 2022; 34: 2107754. [Article] [Google Scholar]
  • Yu WJ, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotech 2013; 8: 952-958. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang S, Xu H, Liao F, et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology 2019; 30: 174002. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Buscema M. Back propagation neural networks. Substance Use Misuse 1998; 33: 233–270 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.