Issue |
Natl Sci Open
Volume 2, Number 5, 2023
Special Topic: Gene Editing towards Translation
|
|
---|---|---|
Article Number | 20220061 | |
Number of page(s) | 18 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20220061 | |
Published online | 07 August 2023 |
- Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-276. [Article] [CrossRef] [PubMed] [Google Scholar]
- Strich JR, Chertow DS. CRISPR-cas biology and its application to infectious diseases. J Clin Microbiol 2019; 57: e01307 [PubMed] [Google Scholar]
- Khan IS, Faiyaz Z, Khan AU. Use of CRISPR in infection control. Curr Protein Pept Sci 2022; 23: 299-309. [Article] [CrossRef] [PubMed] [Google Scholar]
- Theves C, Crubezy E, Biagini P. History of smallpox and its spread in human populations. Microbiol Spectr 2016; 4, doi: 10.1128/microbiolspec.PoH-0004-2014 [CrossRef] [PubMed] [Google Scholar]
- Bandyopadhyay AS, Garon J, Seib K, et al. Polio vaccination: past, present and future. Future Microbiol 2015; 10: 791-808. [Article] [CrossRef] [PubMed] [Google Scholar]
- Maymone MBC, Venkatesh S, Laughter M, et al. Leprosy: Treatment and management of complications. J Am Acad Dermatol 2020; 83: 17-30. [Article] [CrossRef] [PubMed] [Google Scholar]
- Winter AK, Moss WJ. Rubella. Lancet 2022; 399: 1336-1346. [Article] [Google Scholar]
- Boerma T, Mathers CD. The World Health Organization and global health estimates: improving collaboration and capacity. BMC Med 2015; 13: 50. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Shi W, Zou M, et al. Prevalence and risk factors of erectile dysfunction in COVID-19 patients: a systematic review and meta-analysis. J Endocrinol Invest 2023; 46: 795-804. [Article] [Google Scholar]
- Porteus MH. A new class of medicines through DNA editing. N Engl J Med 2019; 380: 947-959. [Article] [CrossRef] [PubMed] [Google Scholar]
- Khalil AM. The genome editing revolution: review. J Genet Eng Biotechnol 2020; 18: 68. [Article] [CrossRef] [PubMed] [Google Scholar]
- Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188: 773-782. [Article] [CrossRef] [PubMed] [Google Scholar]
- Paschon DE, Lussier S, Wangzor T, et al. Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat Commun 2019; 10: 1133. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ma N, Liao B, Zhang H, et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Biol Chem 2013; 288: 34671-34679. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cottle RN, Lee CM, Archer D, et al. Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection. Sci Rep 2015; 5: 16031. [Article] [CrossRef] [PubMed] [Google Scholar]
- Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 2015; 58: 575-585. [Article] [Google Scholar]
- Knipping F, Osborn MJ, Petri K, et al. Genome-wide specificity of highly efficient TALENs and CRISPR/Cas9 for T Cell receptor modification. Mol Ther-Methods Clin Dev 2017; 4: 213-224. [Article] [Google Scholar]
- Fang Y, Cheng Y, Lu D, et al. Treatment of β654-thalassaemia by TALENs in a mouse model. Cell Prolif 2018; 51: e12491. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 2014; 23: R40-R46. [Article] [CrossRef] [PubMed] [Google Scholar]
- Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31: 230-232. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38: 824-844. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zekonyte U, Bacman SR, Smith J, et al. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun 2021; 12: 3210. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Larson MH, Gilbert LA, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 2013; 8: 2180-2196. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-Scale CRISPR-Mediated control of gene repression and activation. Cell 2014; 159: 647-661. [Article] [CrossRef] [PubMed] [Google Scholar]
- Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533: 420-424. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551: 464-471. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576: 149-157. [Article] [CrossRef] [PubMed] [Google Scholar]
- Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 2006; 368: 489-504. [Article] [Google Scholar]
- Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 3: 2510. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu W, Lei R, Le Duff Y, et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 2015; 12: 22. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liao HK, Gu Y, Diaz A, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015; 6: 6413. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Q, Liu S, Liu Z, et al. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res 2018; 250: 21-30. [Article] [Google Scholar]
- Yin C, Zhang T, Qu X, et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 2017; 25: 1168-1186. [Article] [Google Scholar]
- Mancuso P, Chen C, Kaminski R, et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat Commun 2020; 11: 6065. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Archin NM, Margolis DM. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis 2014; 27: 29-35. [Article] [CrossRef] [PubMed] [Google Scholar]
- Saayman SM, Lazar DC, Scott TA, et al. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther 2016; 24: 488-498. [Article] [Google Scholar]
- Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther 2016; 24: 499-507. [Article] [Google Scholar]
- Olson A, Basukala B, Lee S, et al. Targeted chromatinization and repression of HIV-1 provirus transcription with repurposed CRISPR/Cas9. Viruses 2020; 12: 1154. [Article] [Google Scholar]
- Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26: 808-816. [Article] [CrossRef] [PubMed] [Google Scholar]
- Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28: 839-847. [Article] [CrossRef] [PubMed] [Google Scholar]
- DiGiusto DL, Cannon PM, Holmes MC, et al. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther-Methods Clin Dev 2016; 3: 16067. [Article] [Google Scholar]
- Ye L, Wang J, Beyer AI, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 2014; 111: 9591-9596. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li C, Guan X, Du T, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 2015; 96: 2381-2393. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 2017; 25: 1782-1789. [Article] [CrossRef] [Google Scholar]
- Liu Z, Liang J, Chen S. Genome editing of CCR5 by AsCpf1 renders CD4+ T cells resistance to HIV-1 infection. Cell Biosci 2020; 10: 85. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hou P, Chen S, Wang S, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 2015; 5: 15577. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hultquist JF, Schumann K, Woo JM, et al. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell Rep 2016; 17: 1438-1452. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Q, Chen S, Xiao Q, et al. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology 2017; 14: 51. [Article] [CrossRef] [PubMed] [Google Scholar]
- Tian S, Choi WT, Liu D, et al. Distinct functional sites for human immunodeficiency virus type 1 and stromal cell-derived factor 1α on CXCR4 transmembrane helical domains. J Virol 2005; 79: 12667-12673. [Article] [Google Scholar]
- Liu S, Wang Q, Yu X, et al. HIV-1 inhibition in cells with CXCR4 mutant genome created by CRISPR-Cas9 and piggyBac recombinant technologies. Sci Rep 2018; 8: 8573. [Article] [CrossRef] [PubMed] [Google Scholar]
- Revill PA, Chisari FV, Block JM, et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol 2019; 4: 545-558. [Article] [Google Scholar]
- Chuang YC, Tsai KN, Ou JHJ. Pathogenicity and virulence of Hepatitis B virus. Virulence 2022; 13: 258-296. [Article] [Google Scholar]
- Cradick TJ, Keck K, Bradshaw S, et al. Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther 2010; 18: 947-954. [Article] [Google Scholar]
- Bloom K, Ely A, Mussolino C, et al. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 2013; 21: 1889-1897. [Article] [Google Scholar]
- Weber ND, Stone D, Sedlak RH, et al. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS One 2014; 9: e97579 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen J, Zhang W, Lin J, et al. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther 2014; 22: 303-311. [Article] [Google Scholar]
- Ramanan V, Shlomai A, Cox DBT, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 2015; 5: 10833. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu X, Hao R, Chen S, et al. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 2015; 96: 2252-2261. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li H, Sheng C, Liu H, et al. An effective molecular target site in hepatitis B virus S gene for Cas9 Cleavage and mutational inactivation. Int J Biol Sci 2016; 12: 1104-1113. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang J, Chen R, Zhang R, et al. The gRNA-miRNA-gRNA ternary cassette combining CRISPR/Cas9 with RNAi approach strongly inhibits hepatitis B virus replication. Theranostics 2017; 7: 3090-3105. [Article] [CrossRef] [PubMed] [Google Scholar]
- Seeger C, Sohn JA. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol Ther 2016; 24: 1258-1266. [Article] [Google Scholar]
- Zhu W, Xie K, Xu Y, et al. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse. Virus Res 2016; 217: 125-132. [Article] [CrossRef] [PubMed] [Google Scholar]
- Song J, Zhang X, Ge Q, et al. CRISPR/Cas9-mediated knockout of HBsAg inhibits proliferation and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J Cell Biochem 2018; 119: 8419-8431. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Zhao M, Gong M, et al. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Res 2018; 152: 58-67. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kostyushev D, Brezgin S, Kostyusheva A, et al. Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell Mol Life Sci 2019; 76: 1779-1794. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gorsuch CL, Nemec P, Yu M, et al. Targeting the hepatitis B cccDNA with a sequence-specific ARCUS nuclease to eliminate hepatitis B virus in vivo. Mol Ther 2022; 30: 2909-2922. [Article] [Google Scholar]
- Zhou H, Wang X, Steer CJ, et al. Efficient silencing of hepatitis B virus S gene through CRISPR-mediated base editing. Hepatol Commun 2022; 6: 1652-1663. [Article] [CrossRef] [PubMed] [Google Scholar]
- Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181: 905-913.e7. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang C, Konermann S, Brideau NJ, et al. Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell 2018; 175: 212-223.e17. [Article] [CrossRef] [PubMed] [Google Scholar]
- Abbott TR, Dhamdhere G, Liu Y, et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 2020; 181: 865-876.e12. [Article] [CrossRef] [PubMed] [Google Scholar]
- Blanchard EL, Vanover D, Bawage SS, et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol 2021; 39: 717-726. [Article] [CrossRef] [PubMed] [Google Scholar]
- Fareh M, Zhao W, Hu W, et al. Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Nat Commun 2021; 12: 4270. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zheng Y, Li X, Jiao Y, et al. High-risk human papillomavirus oncogenic E6/E7 mRNAs splicing regulation. Front Cell Infect Microbiol 2022; 12: 929666. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hu Z, Ding W, Zhu D, et al. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest 2015; 125: 425-436. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kennedy EM, Kornepati AV, Goldstein M, et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 2014; 88: 11965 [Google Scholar]
- Morris M, Eifel PJ, Lu J, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 1999; 340: 1137-1143. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhen S, Lu JJ, Wang LJ, et al. In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line. Transl Oncol 2016; 9: 498-504. [Article] [Google Scholar]
- Jubair L, Fallaha S, McMillan NAJ. Systemic delivery of CRISPR/Cas9 targeting HPV oncogenes is effective at eliminating established tumors. Mol Ther 2019; 27: 2091-2099. [Article] [Google Scholar]
- Inturi R, Jemth P. CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology 2021; 562: 92-102. [Article] [Google Scholar]
- Gao C, Wu P, Yu L, et al. The application of CRISPR/Cas9 system in cervical carcinogenesis. Cancer Gene Ther 2022; 29: 466-474. [Article] [CrossRef] [PubMed] [Google Scholar]
- Vercoe RB, Chang JT, Dy RL, et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet, 2013; 9: e1003454 [CrossRef] [PubMed] [Google Scholar]
- Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013; 31: 233-239. [Article] [CrossRef] [PubMed] [Google Scholar]
- Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014; 32: 1146-1150. [Article] [CrossRef] [PubMed] [Google Scholar]
- Selle K, Fletcher JR, Tuson H, et al. In vivo targeting of clostridioides difficile using phage-delivered CRISPR-Cas3 Antimicrobials. mBio 2020; 11, doi: 10.1128/mBio.00019-20 [CrossRef] [PubMed] [Google Scholar]
- Shapiro RS, Chavez A, Porter CBM, et al. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nat Microbiol 2018; 3: 73-82. [Article] [Google Scholar]
- Halder V, Porter CBM, Chavez A, et al. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans. Nat Protoc 2019; 14: 955-975. [Article] [CrossRef] [PubMed] [Google Scholar]
- White NJ. Severe malaria. Malar J 2022; 21: 284. [Article] [Google Scholar]
- Straimer J, Lee MCS, Lee AH, et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nat Methods 2012; 9: 993-998. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ghorbal M, Gorman M, Macpherson CR, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 2014; 32: 819-821. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wagner JC, Platt RJ, Goldfless SJ, et al. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods 2014; 11: 915-918. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hajj RE, Tawk L, Itani S, et al. Toxoplasmosis: Current and emerging parasite druggable targets. Microorganisms 2021; 9: 2531. [Article] [Google Scholar]
- Shen B, Brown KM, Lee TD, et al. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. mBio 2014; 5: e01114 [Google Scholar]
- Sidik SM, Huet D, Ganesan SM, et al. A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell 2016; 166: 1423-1435.e12. [Article] [CrossRef] [PubMed] [Google Scholar]
- Palencia A, Bougdour A, Brenier-Pinchart M, et al. Targeting Toxoplasma gondiiCPSF 3 as a new approach to control toxoplasmosis. EMBO Mol Med 2017; 9: 385-394. [Article] [CrossRef] [PubMed] [Google Scholar]
- Agudelo Higuita NI, Bronze MS, Smith JW, et al. Chagas disease in Oklahoma. Am J Med Sci 2022; 364: 521-528. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lander N, Li ZH, Niyogi S, et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in trypanosoma cruzi reveals their role in flagellar attachment. mBio 2015; 6: e01012 [Google Scholar]
- Sollelis L, Ghorbal M, MacPherson CR, et al. First efficient CRISPR-Cas9-mediated genome editing in L eishmania parasites. Cell Microbiol 2015; 17: 1405-1412. [Article] [CrossRef] [PubMed] [Google Scholar]
- Farina JM, García-Martínez CE, Saldarriaga C, et al. Leishmaniasis y corazón. ACM 2022; 92: 85-93. [Article] [Google Scholar]
- Trevisan M, Palù G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti-infective Ther 2017; 15: 1001-1013. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chan K, Tong AHY, Brown KR, et al. Pooled CRISPR-based genetic screens in mammalian cells. J Vis Exp 2019; [Article] [PubMed] [Google Scholar]
- Johnson NM, Alvarado AF, Moffatt TN, et al. HIV-based lentiviral vectors: Origin and sequence differences. Mol Ther-Methods Clin Dev 2021; 21: 451-465. [Article] [Google Scholar]
- Munis AM. Gene therapy applications of non-human lentiviral vectors. Viruses 2020; 12: 1106. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lyu P, Wang L, Lu B. Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing. Life 2020; 10: 366. [Article] [Google Scholar]
- Ling S, Yang S, Hu X, et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng 2021; 5: 144-156. [Article] [Google Scholar]
- Gupta V, Lourenço SP, Hidalgo IJ. Development of gene therapy vectors: Remaining challenges. J Pharm Sci 2021; 110: 1915-1920. [Article] [Google Scholar]
- Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566: 218-223. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pausch P, Al-Shayeb B, Bisom-Rapp E, et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 2020; 369: 333-337. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Vannucci L, Lai M, Chiuppesi F, et al. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013; 36: 1-22 [PubMed] [Google Scholar]
- Caffery B, Lee J, Alexander-Bryant A. Vectors for glioblastoma gene therapy: Viral & non-viral delivery strategies. Nanomaterials 2019; 9: 105. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.