Open Access
Issue |
Natl Sci Open
Volume 2, Number 5, 2023
Special Topic: Gene Editing towards Translation
|
|
---|---|---|
Article Number | 20220052 | |
Number of page(s) | 14 | |
Section | Life Sciences and Medicine | |
DOI | https://doi.org/10.1360/nso/20220052 | |
Published online | 19 April 2023 |
- Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096. [Article] [Google Scholar]
- Wei W, Gao C. Gene editing: from technologies to applications in research and beyond. Sci China Life Sci 2022; 65: 657-659. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xing S, Jia M, Wei L, et al. CRISPR/Cas9-introduced single and multiple mutagenesis in strawberry. J Genet Genomics 2018; 45: 685-687. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yang T, Deng L, Zhao W, et al. Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. J Genet Genomics 2019; 46: 505-508. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 2017; 551: 464-471. [Article] [CrossRef] [PubMed] [Google Scholar]
- Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533: 420-424. [Article] [CrossRef] [PubMed] [Google Scholar]
- Li C, Zhang R, Meng X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 2020; 38: 875-882. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu ZH, Tang S, Hu W, et al. Precise editing of methylated cytosine in Arabidopsis thaliana using a human APOBEC3Bctd-Cas9 fusion. Sci China Life Sci 2022; 65: 219-222. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Q, Yin K, Liu G, et al. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Sci China Life Sci 2020; 63: 1918-1927. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen K, Wang Y, Zhang R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 2019; 70: 667-697. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gao C. Genome engineering for crop improvement and future agriculture. Cell 2021; 184: 1621-1635. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xing S, Chen K, Zhu H, et al. Fine-tuning sugar content in strawberry. Genome Biol 2020; 21: 230. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang R, Chen S, Meng X, et al. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci 2021; 64: 1624-1633. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liang Z, Chen K, Li T, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 2017; 8: 14261. [Article] [CrossRef] [PubMed] [Google Scholar]
- Qiu F, Xing S, Xue C, et al. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci China Life Sci 2022; 65: 731-738. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Liang Z, Zong Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 2016; 7: 12617. [Article] [CrossRef] [PubMed] [Google Scholar]
- Gao W, Long L, Tian X, et al. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 2017; 8: 1364. [Article] [CrossRef] [PubMed] [Google Scholar]
- Hawkins C, Caruana J, Schiksnis E, et al. Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. Sci Rep 2016; 6: 29017. [Article] [CrossRef] [PubMed] [Google Scholar]
- Orzaez D, Mirabel S, Wieland WH, et al. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 2006; 140: 3-11. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yan H, Pei X, Zhang H, et al. MYB-mediated regulation of anthocyanin biosynthesis. Int J Mol Sci 2021; 22: 3103. [Article] [CrossRef] [PubMed] [Google Scholar]
- Castillejo C, Waurich V, Wagner H, et al. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. Plant Cell 2020; 32: 3723-3749. [Article] [CrossRef] [PubMed] [Google Scholar]
- Singh R, Low ETL, Ooi LCL, et al. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB. Nat Commun 2014; 5: 4106. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Xu Z, Yang Q, Feng K, et al. DcMYB113, a root‐specific R2R3‐MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnol J 2020; 18: 1585-1597. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lin-Wang K, McGhie TK, Wang M, et al. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front Plant Sci 2014; 5: 651. [Article] [CrossRef] [PubMed] [Google Scholar]
- Sun C, Deng L, Du M, et al. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol Plant 2020; 13: 42-58. [Article] [Google Scholar]
- Baltes NJ, Gil-Humanes J, Cermak T, et al. DNA replicons for plant genome engineering. Plant Cell 2014; 26: 151-163. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mortimer C, Dugdale B, Waterhouse P. Development of an autonomously replicating viral expression system tailored for Catharanthus roseus. Plant Biotechnol J 2020; 18: 1115-1117. [Article] [CrossRef] [PubMed] [Google Scholar]
- Regnard GL, Halley-Stott RP, Tanzer FL, et al. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 2010; 8: 38-46. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zaidi SS, Naqvi RZ, Asif M, et al. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum ). Plant Biotechnol J 2020; 18: 691-706. [Article] [CrossRef] [PubMed] [Google Scholar]
- Čermák T, Baltes NJ, Čegan R, et al. High-frequency, precise modification of the tomato genome. Genome Biol 2015; 16: 232. [Article] [CrossRef] [PubMed] [Google Scholar]
- Giampieri F, Tulipani S, Alvarez-Suarez JM, et al. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012; 28: 9-19. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang D, Yeats TH, Uluisik S, et al. Fruit softening: revisiting the role of pectin. Trends Plant Sci 2018; 23: 302-310. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-771. [Article] [Google Scholar]
- Zong Y, Song Q, Li C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 2018; 36: 950-953. [Article] [CrossRef] [Google Scholar]
- Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020; 38: 883-891. [Article] [CrossRef] [PubMed] [Google Scholar]
- Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576: 149-157. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lin Q, Jin S, Zong Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 2021; 39: 923-927. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lin Q, Zong Y, Xue C, et al. Prime genome editing in rice and wheat. Nat Biotechnol 2020; 38: 582-585. [Article] [CrossRef] [PubMed] [Google Scholar]
- Nelson JW, Randolph PB, Shen SP, et al. Author Correction: Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2021; 40: 432. [Article] [Google Scholar]
- An J, Wang X, Zhang X, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation. Plant Biotechnol J 2020; 18: 337-353. [Article] [CrossRef] [PubMed] [Google Scholar]
- Trieu AT, Burleigh SH, Kardailsky IV, et al. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 2000; 22: 531-541. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yasmin A, Debener T. Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tiss Organ Cult 2010; 102: 245-250. [Article] [CrossRef] [Google Scholar]
- Bond DM, Albert NW, Lee RH, et al. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. Plant Methods 2016; 12: 41. [Article] [CrossRef] [PubMed] [Google Scholar]
- Brendolise C, Espley RV, Lin-Wang K, et al. Multiple copies of a simple MYB-binding site confers trans-regulation by specific flavonoid-related R2R3 MYBs in diverse species. Front Plant Sci 2017; 8: 1864. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou H, Lin‐Wang K, Wang F, et al. Activator‐type R2R3‐MYB genes induce a repressor‐type R2R3‐MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytol 2019; 221: 1919-1934. [Article] [CrossRef] [PubMed] [Google Scholar]
- Xing HL, Dong L, Wang ZP, et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 2014; 14: 327. [Article] [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.