Open Access
Review
Issue
Natl Sci Open
Volume 3, Number 3, 2024
Article Number 20230017
Number of page(s) 40
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20230017
Published online 09 November 2023
  • Hannah DM, Lynch I, Mao F, et al. Water and sanitation for all in a pandemic. Nat Sustain 2020; 3: 773–775 [Google Scholar]
  • Gomes IB, Maillard JY, Simões LC, et al. Emerging contaminants affect the microbiome of water systems—strategies for their mitigation. npj Clean Water 2020; 3: 39. [Article] [Google Scholar]
  • Alvarez PJJ, Chan CK, Elimelech M, et al. Emerging opportunities for nanotechnology to enhance water security. Nat Nanotech 2018; 13: 634-641. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu L, Johnson HL, Cousens S, et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379: 2151–2161 [CrossRef] [PubMed] [Google Scholar]
  • Kümmerer K, Dionysiou DD, Olsson O, et al. A path to clean water. Science 2018; 361: 222-224. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhan S, Zhang H, Mi X, et al. Efficient fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides. Environ Sci Technol 2020; 54: 8333-8343. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Hodges BC, Cates EL, Kim JH. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat Nanotech 2018; 13: 642-650. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Zhang L, He G, et al. Selective H2O2 conversion to hydroxyl radicals in the electron-rich area of hydroxylated C-g-C3N4/CuCo-Al2O3. J Mater Chem A 2017; 5: 7153-7164. [Article] [CrossRef] [Google Scholar]
  • Lyu L, Zhang L, Hu C, et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification. J Mater Chem A 2016; 4: 8610-8619. [Article] [Google Scholar]
  • Deng K, Gu Y, Gao T, et al. Carbonized MOF-coated zero-valent Cu driving an efficient dual-reaction-center fenton-like water treatment process through utilizing pollutants and natural dissolved oxygen. ACS EST Water 2022; 2: 174-183. [Article] [CrossRef] [Google Scholar]
  • Zhang X, Liang J, Sun Y, et al. Mesoporous reduction state cobalt species-doped silica nanospheres: An efficient Fenton-like catalyst for dual-pathway degradation of organic pollutants. J Colloid Interface Sci 2020; 576: 59-67. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Zhang L, Wang Q, et al. Enhanced Fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation. Environ Sci Technol 2015; 49: 8639-8647. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Zhang L, Hu C. Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres. Chem Eng J 2015; 274: 298-306. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li C, Cai X, Fang Q, et al. Peroxymonosulfate as inducer driving interfacial electron donation of pollutants over oxygen-rich carbon-nitrogen graphene-like nanosheets for water treatment. J Colloid Interface Sci 2022; 622: 272-283. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang H, Lyu L, Fang Q, et al. Cation-π structure inducing efficient peroxymonosulfate activation for pollutant degradation over atomically dispersed cobalt bonding graphene-like nanospheres. Appl Catal B-Environ 2021; 286: 119912. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang H, Li C, Lyu L, et al. Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification. Appl Catal B-Environ 2020; 270: 118874. [Article] [CrossRef] [Google Scholar]
  • Jin XG, Wu CY, Tian XM, et al. A magnetic-void-porous MnFe2O4/carbon microspheres nano-catalyst for catalytic ozonation: Preparation, performance and mechanism. Environ Sci Ecotech 2021; 7: 100110 [NASA ADS] [Google Scholar]
  • Song Z, Wang M, Wang Z, et al. Insights into heteroatom-doped graphene for catalytic ozonation: active centers, reactive oxygen species evolution, and catalytic mechanism. Environ Sci Technol 2019; 53: 5337-5348. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Duan X, Xie Y, et al. Nanocarbon-based catalytic ozonation for aqueous oxidation: Engineering defects for active sites and tunable reaction pathways. ACS Catal 2020; 10: 13383-13414. [Article] [CrossRef] [Google Scholar]
  • Loeb SK, Alvarez PJJ, Brame JA, et al. The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environ Sci Technol 2019; 53: 2937–2947 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Guo S, Zhu X, Zhang H, et al. Improving photocatalytic water treatment through nanocrystal engineering: Mesoporous nanosheet-assembled 3D BiOCl hierarchical nanostructures that induce unprecedented large vacancies. Environ Sci Technol 2018; 52: 6872-6880. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhang D, Lee C, Javed H, et al. Easily recoverable, micrometer-sized TiO2 hierarchical spheres decorated with cyclodextrin for enhanced photocatalytic degradation of organic micropollutants. Environ Sci Technol 2018; 52: 12402-12411. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Jiang G, Lan M, Zhang Z, et al. Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol in water. Environ Sci Technol 2017; 51: 7599-7605. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu K, Yu JCC, Dong H, et al. Degradation and mineralization of carbamazepine using an electro-fenton reaction catalyzed by magnetite nanoparticles fixed on an electrocatalytic carbon fiber textile cathode. Environ Sci Technol 2018; 52: 12667-12674. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lu C, Fang Q, Hu C, et al. Sustainable micro-activation of dissolved oxygen driving pollutant conversion on Mo-enhanced zinc sulfide surface in natural conditions. Fund Res 2021; 3: 422–429 [Google Scholar]
  • Lyu L, Yan D, Yu G, et al. Efficient destruction of pollutants in water by a dual-reaction-center fenton-like process over carbon nitride compounds-complexed Cu(II)-CuAlO2. Environ Sci Technol 2018; 52: 4294-4304. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Zhang L, Hu C. Galvanic-like cells produced by negative charge nonuniformity of lattice oxygen on d-TiCuAl-SiO2 nanospheres for enhancement of Fenton-catalytic efficiency. Environ Sci-Nano 2016; 3: 1483-1492. [Article] [CrossRef] [Google Scholar]
  • Lyu L, Lu C, Sun Y, et al. Low consumption Fenton-like water purification through pollutants as electron donors substituting H2O2 consumption via twofold cation-π over MoS2 cross-linking g-C3N4 hybrid. Appl Catal B-Environ 2023; 320: 121871. [Article] [CrossRef] [Google Scholar]
  • Wang Y, Zhang P, Lyu L, et al. Preferential destruction of micropollutants in water through a self-purification process with dissolved organic carbon polar complexation. Environ Sci Technol 2022; 56: 10849-10856. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lagutschenkov A, Sinha RK, Maitre P, et al. Structure and infrared spectrum of the Ag+-phenol ionic complex. J Phys Chem A 2010; 114: 11053-11059. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gebbie MA, Wei W, Schrader AM, et al. Tuning underwater adhesion with cation-π interactions. Nat Chem 2017; 9: 473-479. [Article] [Google Scholar]
  • Wang L, Yan D, Lyu L, et al. Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process. J Colloid Interface Sci 2018; 527: 251-259. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Deng K, Liang J, et al. The interaction of surface electron distribution-polarized Fe/polyimide hybrid nanosheets with organic pollutants driving a sustainable Fenton-like process. Mater Adv 2020; 1: 1083-1091. [Article] [CrossRef] [Google Scholar]
  • Wang Y, Lyu L, Wang D, et al. Cation-π induced surface cleavage of organic pollutants with OH formation from H2O for water treatment. iScience 2021; 24: 102874. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Cao W, Han M, Lyu L, et al. Efficient Fenton-like process induced by fortified electron-rich O microcenter on the reduction state Cu-doped CNO polymer. ACS Appl Mater Interfaces 2019; 11: 16496-16505. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Yu G, Zhang L, et al. 4-phenoxyphenol-functionalized reduced graphene oxide nanosheets: A metal-free fenton-like catalyst for pollutant destruction. Environ Sci Technol 2018; 52: 747-756. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liu S, Kuznetsov AM, Han W, et al. Removal of dimethylarsinic acid (DMA) in the Fe/C system: Roles of Fe(II) release, DMA/Fe(II) and DMA/Fe(III) complexation. Water Res 2022; 213: 118093. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhang L, Yue Q, Yang K, et al. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: Investigation on pollutants removal and degradation mechanisms. J Hazard Mater 2018; 342: 705-714. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Ou X, Liu T, Zhong W, et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat Commun 2022; 13: 2319. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Zou L, Li J, Liu Z, et al. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat Commun 2019; 10: 3447. [Article] [Google Scholar]
  • Kong XK, Chen CL, Chen QW. Doped graphene for metal-free catalysis. Chem Soc Rev 2014; 43: 2841-2857. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Hu C. Heterogeneous Fenton catalytic water treatment technology and mechanism. Prog Chem 2017; 29: 981–999 [Google Scholar]
  • Gao T, Lu C, Hu C, et al. H2O2 inducing dissolved oxygen activation and electron donation of pollutants over Fe-ZnS quantum dots through surface electron-poor/rich microregion construction for water treatment. J Hazard Mater 2021; 420: 126579. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Gao T, Wang H, Xu J, et al. Enhanced water purification efficiency induced by trace H2O2 on the electron distribution-polarized unequilibrium surface of CuS/ZnO nanosheets. ACS ES&T Water 2022; 3: 79–85 [Google Scholar]
  • Sun Y, Yi R, Hu C, et al. Enhanced purification efficiency for pharmaceutical wastewater through a pollutant-mediated H2O2 activation pathway over CuZnS nano-aggregated particles. Environ Sci-Nano 2022; 9: 4317-4324. [Article] [CrossRef] [Google Scholar]
  • Zhang H, Lyu L, Hu C, et al. Enhanced purification of kitchen-oil wastewater driven synergistically by surface microelectric fields and microorganisms. Environ Int 2023; 174: 107878. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Jin Y, Li F, Li T, et al. Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Appl Catal B-Environ 2022; 302: 120824. [Article] [CrossRef] [Google Scholar]
  • Li H, Shang J, Yang Z, et al. Oxygen vacancy associated surface fenton chemistry: Surface structure dependent hydroxyl radicals generation and substrate dependent reactivity. Environ Sci Technol 2017; 51: 5685-5694. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Jiao Y, Zheng Y, Jaroniec M, et al. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J Am Chem Soc 2014; 136: 4394-4403. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Duan X, O′Donnell K, Sun H, et al. Sulfur and nitrogen Co-doped graphene for metal-free catalytic oxidation reactions. Small 2015; 11: 3036-3044. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Liu S, Wang M, Qian T, et al. Selenium-doped carbon nanosheets with strong electron cloud delocalization for nondeposition of metal oxides on air cathode of zinc-air battery. ACS Appl Mater Interfaces 2019; 11: 20056-20063. [Article] [Google Scholar]
  • Gao Y, Chen Z, Zhu Y, et al. New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: Important role of electron-deficient carbon atoms. Environ Sci Technol 2020; 54: 1232-1241. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gao Y, Zhu Y, Lyu L, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation. Environ Sci Technol 2018; 52: 14371-14380. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Ma JC, Dougherty DA. The cation-π interaction. Chem Rev 1997; 97: 1303–1324 [CrossRef] [PubMed] [Google Scholar]
  • Meot-Ner M, Deakyne CA. Unconventional ionic hydrogen bonds. 2. NH+.cntdot.cntdot.cntdot.pi. Complexes of onium ions with olefins and benzene derivatives. J Am Chem Soc 1985; 107: 474-479. [Article] [CrossRef] [Google Scholar]
  • Zhu Y, Tang M, Zhang H, et al. Water and the cation-π interaction. J Am Chem Soc 2021; 143: 12397-12403. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Deng G, Pan S, Wang G, et al. Side-on bonded beryllium dinitrogen complexes. Angew Chem Int Ed 2020; 59: 10603-10609. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Han M, Lyu L, Huang Y, et al. In situ generation and efficient activation of H2O2 for pollutant degradation over CoMoS2 nanosphere-embedded rGO nanosheets and its interfacial reaction mechanism. J Colloid Interface Sci 2019; 543: 214-224. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Han M, Cao W, et al. Efficient Fenton-like process for organic pollutant degradation on Cu-doped mesoporous polyimide nanocomposites. Environ Sci-Nano 2019; 6: 798-808. [Article] [CrossRef] [Google Scholar]
  • Deng K, Gao T, Fang Q, et al. Vanadium tetrasulfide cross-linking graphene-like carbon driving a sustainable electron supply chain from pollutants through the activation of dissolved oxygen and hydrogen peroxide. Environ Sci-Nano 2021; 8: 86-96. [Article] [CrossRef] [Google Scholar]
  • Wang Y, Zhang P, Li T, et al. Enhanced Fenton-like efficiency by the synergistic effect of oxygen vacancies and organics adsorption on FexOy-d-g-C3N4 with Fe-N complexation. J Hazard Mater 2021; 408: 124818. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Jiang N, Lyu L, Yu G, et al. A dual-reaction-center Fenton-like process on –C≡N–Cu linkage between copper oxides and defect-containing g-C3N4 for efficient removal of organic pollutants. J Mater Chem A 2018; 6: 17819-17828. [Article] [CrossRef] [Google Scholar]
  • Li L, Hu C, Zhang L, et al. Framework Cu-doped boron nitride nanobelts with enhanced internal electric field for effective Fenton-like removal of organic pollutants. J Mater Chem A 2019; 7: 6946-6956. [Article] [Google Scholar]
  • Liang X, Wang D, Zhao Z, et al. Engineering the low-coordinated single cobalt atom to boost persulfate activation for enhanced organic pollutant oxidation. Appl Catal B-Environ 2022; 303: 120877. [Article] [CrossRef] [Google Scholar]
  • Sun Y, Hu C, Lyu L. New sustainable utilization approach of livestock manure: Conversion to dual-reaction-center Fenton-like catalyst for water purification. npj Clean Water 2022; 5: 53. [Article] [Google Scholar]
  • Cao W, Wang Z, Zhang P, et al. Water self-purification with zero external consumption by livestock manure resource utilization. Environ Sci Technol 2023; 57: 2837-2845. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Shi Y, Xie Z, Hu C, et al. Resourcelized conversion of livestock manure to porous cage microsphere for eliminating emerging contaminants under peroxymonosulfate trigger. iScience 2023; 26: 106139. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhao Z, Tan H, Zhang P, et al. Turning the inert element zinc into an active single-atom catalyst for efficient fenton-like chemistry. Angew Chem Int Ed 2023; 62: e202219178. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lyu L, Cao W, Yu G, et al. Enhanced polarization of electron-poor/rich micro-centers over nZVCu-Cu(II)-rGO for pollutant removal with H2O2. J Hazard Mater 2020; 383: 121182. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liao W, Wang D, Wang Y, et al. Surface-confined destruction of pollutants with H2O2 assistance over Cu0@CuOx-N-graphitic carbon suspensions. J Phys Chem C 2022; 126: 1366-1375. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Cao W, Hu C, Lyu L. Efficient decomposition of organic pollutants over nZVI/FeOx/FeNy-anchored NC layers via a novel dual-reaction-centers-based wet air oxidation process under natural conditions. ACS EST Eng 2021; 1: 1333-1341. [Article] [CrossRef] [MathSciNet] [Google Scholar]
  • Yang J, Zhen X, Wang B, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun 2018; 9: 840. [Article] [Google Scholar]
  • Li X, Li XM, Jiang Y, et al. Structure-guided development of YEATS domain inhibitors by targeting π-π-π stacking. Nat Chem Biol 2018; 14: 1140-1149. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Fang Q, Xie Z, et al. Enhanced Fenton-like process via interfacial electron donating of pollutants over in situ Cobalt-doped graphitic carbon nitride. J Colloid Interface Sci 2022; 608: 673-682. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yu G, Lyu L, Zhang F, et al. Theoretical and experimental evidence for rGO-4-PP Nc as a metal-free Fenton-like catalyst by tuning the electron distribution. RSC Adv 2018; 8: 3312-3320. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhuang Y, Liu Q, Kong Y, et al. Enhanced antibiotic removal through a dual-reaction-center Fenton-like process in 3D graphene based hydrogels. Environ Sci-Nano 2019; 6: 388-398. [Article] [CrossRef] [Google Scholar]
  • Zhuang Y, Wang X, Liu Q, et al. N-doped FeOOH/RGO hydrogels with a dual-reaction-center for enhanced catalytic removal of organic pollutants. Chem Eng J 2020; 379: 122310. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Kong Y, Zhuang Y, Shi B. Tetracycline removal by double-metal-crosslinked alginate/graphene hydrogels through an enhanced Fenton reaction. J Hazard Mater 2020; 382: 121060. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhuang Y, Shi BY. Polymer hydrogels with enhanced stability and heterogeneous Fenton activity in organic pollutant removal. J Environ Sci 2019; 85: 147–155 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhuang Y, Wang X, Zhang L, et al. Fe-Chelated polymer templated graphene aerogel with enhanced Fenton-like efficiency for water treatment. Environ Sci-Nano 2019; 6: 3232-3241. [Article] [CrossRef] [Google Scholar]
  • Wang X, Zhuang Y, Zhang J, et al. Pollutant degradation behaviors in a heterogeneous Fenton system through Fe/S-doped aerogel. Sci Total Environ 2020; 714: 136436. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Li L, Hu C, Zhang L, et al. More octahedral Cu+ and surface acid sites in uniformly porous Cu-Al2O3 for enhanced Fenton catalytic performances. J Hazard Mater 2021; 406: 124739. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhuang Y, Wang X, Zhang L, et al. Confinement Fenton-like degradation of perfluorooctanoic acid by a three dimensional metal-free catalyst derived from waste. Appl Catal B-Environ 2020; 275: 119101. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xie Z, Zhou J, Wang J, et al. Novel Fenton-like catalyst γ-Cu-Al2O3-Bi12O15Cl6 with electron-poor Cu centre and electron-rich Bi centre for enhancement of phenolic compounds degradation and H2O2 utilization: The synergistic effects of σ-Cu-ligand, dual-reaction centres and oxygen vacancies. Appl Catal B-Environ 2019; 253: 28-40. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xu S, Zhu H, Cao W, et al. Cu-Al2O3-g-C3N4 and Cu-Al2O3-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals. Appl Catal B-Environ 2018; 234: 223-233. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gao P, Song Y, Hao M, et al. An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction. Separation Purification Tech 2018; 201: 238-243. [Article] [CrossRef] [Google Scholar]
  • Gao P, Chen X, Hao M, et al. Oxygen vacancy enhancing the Fe2O3-CeO2 catalysts in Fenton-like reaction for the sulfamerazine degradation under O2 atmosphere. Chemosphere 2019; 228: 521-527. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Panjwani MK, Wang Q, Ma Y, et al. High degradation efficiency of sulfamethazine with the dual-reaction-center Fe-Mn-SiO2 Fenton-like nanocatalyst in a wide pH range. Environ Sci-Nano 2021; 8: 2204-2213. [Article] [CrossRef] [Google Scholar]
  • Wen S, Niu Z, Zhang Z, et al. In-situ synthesis of 3D GA on titanium wire as a binder- free electrode for electro-Fenton removing of EDTA-Ni. J Hazard Mater 2018; 341: 128-137. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Zhou X, Xu D, Chen Y, et al. Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@PC modified cathode. Chem Eng J 2020; 384: 123324. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhou H, Dong H, Wang J, et al. Cobalt anchored on porous N, P, S-doping core-shell with generating/activating dual reaction sites in heterogeneous electro-Fenton process. Chem Eng J 2021; 406: 125990. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li X, Xiao C, Ruan X, et al. Enrofloxacin degradation in a heterogeneous electro-Fenton system using a tri-metal-carbon nanofibers composite cathode. Chem Eng J 2022; 427: 130927. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Xia QX, Zhang DJ, Yao ZP, et al. Investigation of Cu heteroatoms and Cu clusters in Fe-Cu alloy and their special effect mechanisms on the Fenton-like catalytic activity and reusability. Appl Catal B: Environ 2022; 302: 120662 [Google Scholar]
  • Zhang X, Yao Z, Wang J, et al. High-capacity NCNT-encapsulated metal NP catalysts on carbonised loofah with dual-reaction centres over C–M bond bridges for Fenton-like degradation of antibiotics. Appl Catal B-Environ 2022; 307: 121205. [Article] [CrossRef] [Google Scholar]
  • Zhang X, Yao Z, Zhou Y, et al. Theoretical guidance for the construction of electron-rich reaction microcenters on C-O-Fe bridges for enhanced Fenton-like degradation of tetracycline hydrochloride. Chem Eng J 2021; 411: 128535. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liang H, Liu R, Hu C, et al. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation. J Hazard Mater 2021; 406: 124692. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Ren Y, Yu J, Zhang J, et al. An in-situ strategy to analyze multi-effect catalysis in iron-copper bimetals catalyzed Fenton-like processes. Appl Catal B-Environ 2021; 299: 120697. [Article] [CrossRef] [Google Scholar]
  • Zhang N, Xue C, Wang K, et al. Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts. Chem Eng J 2020; 380: 122516. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Gu Y, Gao T, Zhang F, et al. Surface sulfur vacancies enhanced electron transfer over Co-ZnS quantum dots for efficient degradation of plasticizer micropollutants by peroxymonosulfate activation. Chin Chem Lett 2021; 33: 3829-3834. [Article] [Google Scholar]
  • Han M, Liang G, Zhou S, et al. Zero-added conversion of chicken manure into dual-reaction-center catalyst for pollutant degradation triggered by peroxymonosulfate. Separation Purification Tech 2023; 317: 123763. [Article] [CrossRef] [Google Scholar]
  • Li F, Lu Z, Li T, et al. Origin of the excellent activity and selectivity of a single-atom copper catalyst with unsaturated Cu-N2 sites via peroxydisulfate activation: Cu(III) as a dominant oxidizing species. Environ Sci Technol 2022; 56: 8765-8775. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Cao W, Lyu L, Deng K, et al. L-Ascorbic acid oxygen-induced micro-electronic fields over metal-free polyimide for peroxymonosulfate activation to realize efficient multi-pathway destruction of contaminants. J Mater Chem A 2020; 8: 810-819. [Article] [CrossRef] [Google Scholar]
  • Cao W, Luo Y, Cai X, et al. π-π conjugation driving peroxymonosulfate activation for pollutant elimination over metal-free graphitized polyimide surface. J Hazard Mater 2021; 412: 125191. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang L, Huang X, Han M, et al. Efficient inhibition of photogenerated electron-hole recombination through persulfate activation and dual-pathway degradation of micropollutants over iron molybdate. Appl Catal B-Environ 2019; 257: 117904. [Article] [CrossRef] [Google Scholar]
  • Liu B, Guo W, Si Q, et al. Atomically dispersed cobalt on carbon nitride for peroxymonosulfate activation: Switchable catalysis enabled by light irradiation. Chem Eng J 2022; 446: 137277. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Si Q, Guo W, Liu B, et al. Spin-states-assistance peroxymonosulfate absorption via Mn doped catalyst with/without light for BPA oxidation: The negative contribution of electrons transfer by light. Chem Eng J 2022; 443: 136399. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zong M, Song D, Zhang X, et al. Facet-dependent photodegradation of methylene blue by hematite nanoplates in visible light. Environ Sci Technol 2021; 55: 677-688. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Liras M, Barawi M, de la Peña O’Shea VA. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem Soc Rev 2019; 48: 5454-5487. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Zhou Z, Zhang Y, Shen Y, et al. Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev 2018; 47: 2298-2321. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li F, Han M, Jin Y, et al. Internal electric field construction on dual oxygen group-doped carbon nitride for enhanced photodegradation of pollutants under visible light irradiation. Appl Catal B-Environ 2019; 256: 117705. [Article] [CrossRef] [Google Scholar]
  • Li F, Li T, Zhang L, et al. Enhancing photocatalytic performance by direct photo-excited electron transfer from organic pollutants to low-polymerized graphitic carbon nitride with more C-NH/NH2 exposure. Appl Catal B-Environ 2021; 296: 120316. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Li F, Lu Z, Zhang P, et al. Boosting the extra generation of superoxide radicals on graphitic carbon nitride with carbon vacancies by the modification of pollutant adsorption for high-performance photocatalytic degradation. ACS EST Eng 2022; 2: 1296-1305. [Article] [CrossRef] [Google Scholar]
  • Li J, Cai L, Shang J, et al. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv Mater 2016; 28: 4059-4064. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Yang C, Ma BC, Zhang L, et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed 2016; 55: 9202-9206. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li H, Tu W, Zhou Y, et al. Z-scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv Sci 2016; 3: 1500389. [Article] [CrossRef] [Google Scholar]
  • Fan X, Zhang L, Cheng R, et al. Construction of graphitic C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal 2015; 5: 5008-5015. [Article] [Google Scholar]
  • Chen Z, Li S, Peng Y, et al. Tailoring aromatic ring-terminated edges of g-C3N4 nanosheets for efficient photocatalytic hydrogen evolution with simultaneous antibiotic removal. Catal Sci Technol 2020; 10: 5470-5479. [Article] [CrossRef] [Google Scholar]
  • Chu S, Wang Y, Guo Y, et al. Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property. ACS Catal 2013; 3: 912-919. [Article] [CrossRef] [Google Scholar]
  • Guo Y, Zhou Q, Nan J, et al. Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nat Commun 2022; 13: 2067. [Article] [Google Scholar]
  • Wang Y, Zhang P, Lyu L, et al. Efficient destruction of humic acid with a self-purification process in an Fe0-FeyCz/Fex-GZIF-8-rGO aqueous suspension. Chem Eng J 2022; 446: 136625. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Nie J, Zou J, Yan S, et al. Photosensitized transformation of peroxymonosulfate in dissolved organic matter solutions under simulated solar irradiation. Environ Sci Technol 2022; 56: 1963-1972. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Gu H, Liu X, Liu X, et al. Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nat Commun 2021; 12: 5422. [Article] [Google Scholar]
  • Gong X, Yang Z, Peng L, et al. In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system. J Power Sources 2018; 378: 190-197. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Lyu J, Niu L, Shen F, et al. In situ hydrogen peroxide production for selective oxidation of benzyl alcohol over a pd@hierarchical titanium silicalite catalyst. ACS Omega 2020; 5: 16865-16874. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li R, Huang Y, Zhu D, et al. Improved oxygen activation over a carbon/Co3O4 nanocomposite for efficient catalytic oxidation of formaldehyde at room temperature. Environ Sci Technol 2021; 55: 4054-4063. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.