Open Access
Issue |
Natl Sci Open
Volume 3, Number 5, 2024
|
|
---|---|---|
Article Number | 20230061 | |
Number of page(s) | 16 | |
Section | Earth and Environmental Sciences | |
DOI | https://doi.org/10.1360/nso/20230061 | |
Published online | 29 February 2024 |
- Mishra V, Cherkauer KA, Bowling LC, et al. Lake Ice phenology of small lakes: Impacts of climatevariability in the Great Lakes region. GlobPlanet Change 2011; 76: 166-185. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Verpoorter C, Kutser T, Seekell DA, et al. A global inventory of lakes based on high-resolutionsatellite imagery. Geophys Res Lett 2014; 41: 6396-6402. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Brown LC, Duguay CR. The response and role of ice cover in lake-climate interactions. Prog Phys Geography-Earth Environ 2010; 34: 671-704. [Article] [CrossRef] [Google Scholar]
- Woolway RI, Kraemer BM, Lenters JD, et al. Global lake responses to climate change. Nat Rev Earth Environ 2020; 1: 388-403. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Du J, Kimball JS, Duguay C, et al. Satellite microwave assessment of northern hemispherelake ice phenology from 2002 to 2015. Cryosphere 2017; 11: 47-63. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Magnuson JJ, Robertson DM, Benson BJ, et al. Historical trends in lake and river ice cover in theNorthern Hemisphere. Science 2000; 289: 1743-1746. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hampton SE, Galloway AWE, Powers SM, et al. Ecology under lake ice. Ecol Lett 2017; 20: 98–111 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gao Y, Jia J, Lu Y, et al. Determining dominating control mechanisms of inlandwater carbon cycling processes and associated gross primary productivityon regional and global scales. Earth-SciRev 2020; 213: 103497. [Article] [Google Scholar]
- Li Z, Gao Y, Wang S, et al. Phytoplankton community response to nutrients alonglake salinity and altitude gradients on the Qinghai-Tibet Plateau. Ecol Indicat 2021; 128: 107848. [Article] [CrossRef] [Google Scholar]
- Jakobsen HH, Blanda E, Staehr PA, et al. Development of phytoplankton communities: Implicationsof nutrient injections on phytoplankton composition, pH and ecosystemproduction. J Exp MarBiol Ecol 2015; 473: 81-89. [Article] [CrossRef] [Google Scholar]
- Wang S, Gao Y, Jia J, et al. Water level as the key controlling regulator associatedwith nutrient and gross primary productivity changes in a large floodplain-lakesystem (Lake Poyang), China. J Hydrol 2021; 599: 126414. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liang Y, Zhang Y, Wang N, et al. Estimating primary production of picophytoplanktonusing the carbon-based ocean productivity model: A preliminary study. Front Microbiol 2017; 8: 1926. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cloern JE, Foster SQ, Kleckner AE. Phytoplankton primary production in the world’s estuarine-coastalecosystems. Biogeosciences 2014; 11: 2477-2501. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li X, Shi F, Ma Y, et al. Significant winter CO2 uptake by salinelakes on the Qinghai-Tibet Plateau. Glob Change Biol 2022; 28: 2041-2052. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wen Z, Song K, Shang Y, et al. Variability of chlorophyll and the influence factorsduring winter in seasonally ice-covered lakes. JEnviron Manage 2020; 276: 111338. [Article] [Google Scholar]
- Kalinowska K, Napiórkowska-Krzebietke A, Bogacka-Kapusta E, et al. Comparison of ice-on and ice-off abiotic and bioticparameters in three eutrophic lakes. Ecol Res 2019; 34: 687-698. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Twiss MR, McKay RML, Bourbonniere RA, et al. Diatoms abound in ice-covered Lake Erie: An investigationof offshore winter limnology in Lake Erie over the period 2007 to2010. J Great LakesRes 2010; 38: 18-30. [Article] [Google Scholar]
- Jiang MY, Wang XD, Liu XH, et al. A review of phytoplankton researchduring the frozen period in lakes. Chin J Ecol 2023; 42: 2010–2019 [Google Scholar]
- Maeda O, Ichimura S. Onthe high density of a phytoplankton population found in a lake underice. Intl Rev HydroBiol 1973; 58: 673-689. [Article] [CrossRef] [Google Scholar]
- Twiss MR, Smith DE, Cafferty EM, et al. Phytoplankton growth dynamics in offshore Lake Erieduring mid-winter. J Great LakesRes 2014; 40: 449-454. [Article] [CrossRef] [Google Scholar]
- Yang Y, Stenger-Kovács C, Padisák J, et al. Effects of winter severity on spring phytoplanktondevelopment in a temperate lake (Lake Erken, Sweden). Hydrobiologia 2016; 780: 47-57. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hampton SE, Moore MV, Ozersky T, et al. Heating up a cold subject: Prospects for under-iceplankton research in lakes. J Plankton Res 2015; 37: 277-284. [Article] [CrossRef] [Google Scholar]
- Bolsenga SJ, Vanderploeg HA. Estimating photosynthetically available radiation into open and ice-coveredfreshwater lakes from surface characteristics; a high transmittancecase study. Hydrobiologia 1992; 243-244: 95-104. [Article] [CrossRef] [Google Scholar]
- Davis MN, McMahon TE, Cutting KA, et al. Environmental and climatic factors affecting winterhypoxia in a freshwater lake: Evidence for a hypoxia refuge and forre-oxygenation prior to spring ice loss. Hydrobiologia 2020; 847: 3983-3997. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shao D, Li H, Wang J, et al. Distinguishing the role of wind in snow distributionby utilizing remote sensing and modeling data: Case Study in the NortheasternTibetan Plateau. IEEE J SelTop Appl Earth Observations Remote Sens 2017; 10: 4445-4456. [Article] [CrossRef] [Google Scholar]
- Hodgkins GA. The importance of record length in estimating the magnitude of climaticchanges: An example using 175 years of lake ice-out dates in New England. Climatic Change 2013; 119: 705-718. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Cai Y, Ke CQ, Yao G, et al. MODIS-observed variations of lake ice phenology inXinjiang, China. Climatic Change 2020; 158: 575-592. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chylek P, Folland CK, Lesins G, et al. Arctic air temperature change amplification and theAtlantic Multidecadal Oscillation. Geophys Res Lett 2009; 36: 2009GL038777. [Article] [CrossRef] [Google Scholar]
- Chen DL, Xu BQ, Yao TD, et al. Assessment of past, present and futureenvironmental changes on the Tibetan Plateau (in Chinese). Chin Sci Bull 2015; 60: 3025–3035 [Google Scholar]
- Zhang Q, Wang G, Zhao J, et al. Water circulation and water resources of Asia’swater tower: The past and future. Chin Sci Bull 2023; 68: 4982-4994. [Article] [CrossRef] [Google Scholar]
- Nõges P, Nõges T. Weaktrends in ice phenology of Estonian large lakes despite significantwarming trends. Hydrobiologia 2014; 731: 5-18. [Article] [CrossRef] [Google Scholar]
- Ghanbari RN, Bravo HR, Magnuson JJ, et al. Coherence between lake ice cover, local climate andteleconnections (Lake Mendota, Wisconsin). J Hydrol 2009; 374: 282-293. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li LV, Tingbin Z, Guihua YI, et al. Changes of lake areas and its response to the climaticfactors in Tibetan Plateau since 2000. J Lake Sci 2019; 31: 573-589. [Article] [CrossRef] [Google Scholar]
- Pritchard HD. Asia’s shrinking glaciers protect large populations from droughtstress. Nature 2019; 569: 649-654. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Tai X, Wang N, Wu Y, et al. Lake ice phenology variations and influencing factorsof Selin Co from 2000 to 2020. J Lake Sci 2022; 34: 334-348. [Article] [Google Scholar]
- Wu QH, Li CY, Sun B, et al. Change of ice phenology in the Hulun Lakefrom 1986 to 2017 (in Chinese). Prog Phys Geog 2019; 38: 1933–1943 [Google Scholar]
- Leppäranta M, Terzhevik A, Shirasawa K. Solarradiation and ice melting in Lake Vendyurskoe, Russian Karelia. HydrolRes 2009; 41: 50-62. [Article] [Google Scholar]
- Wang GX, Zhang, TJ, Yang RM, et al. Lake ice changes in the third poleand the arctic (in Chinese). J Glaciol Geocryol 2020; 42: 124–139 [CrossRef] [Google Scholar]
- Zagarese HE, Sagrario MÁG, Wolf-Gladrow D, et al. Patterns of CO2 concentration and inorganiccarbon limitation of phytoplankton biomass in agriculturally eutrophiclakes. Water Res 2021; 190: 116715. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yao C, Wang Q, Jiang X, et al. Review of lake ecosystem’s characteristicsof carbon sink and potential value on carbon neutrality (in Chinese). Acta Ecologica Sin 2023; 43: 893–909 [Google Scholar]
- Karlsson J, Byström P, Ask J, et al. Light limitation of nutrient-poor lake ecosystems. Nature 2009; 460: 506-509. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pernica P, North RL, Baulch HM. In the cold light of day: The potential importance of under-ice convectivemixed layers to primary producers. InlandWaters 2017; 7: 138-150. [Article] [Google Scholar]
- Jewson DH, Granin NG, Zhdanov AA, et al. Effect of snow depth on under-ice irradiance and growthof Aulacoseira baicalensis in Lake Baikal. Aquat Ecol 2009; 43: 673-679. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Bertilsson S, Burgin A, Carey CC, et al. The under-ice microbiome of seasonally frozen lakes. Limnology Oceanography 2013; 58: 1998-2012. [Article] [CrossRef] [Google Scholar]
- Hargrave BT. Similarity of oxygen uptake by benthic communities. Limnology Oceanography 1969; 14: 801-805. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Kirillin G, Leppäranta M, Terzhevik A, et al. Physics of seasonally ice-covered lakes: A review. Aquat Sci 2012; 74: 659-682. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Smits AP, Gomez NW, Dozier J, et al. Winter climate and lake morphology control ice phenologyand under-ice temperature and oxygen regimes in mountain lakes. JGRBioGeoscis 2021; 126: e2021JG006277. [Article] [Google Scholar]
- Jansen J, Thornton BF, Jammet MM, et al. Climate-sensitive controls on large spring emissionsof CH4 and CO2 from northern lakes. JGRBioGeoscis 2019; 124: 2379-2399. [Article] [Google Scholar]
- Sepulveda-Jauregui A, Walter Anthony KM, Martinez-Cruz K, et al. Methane and carbon dioxide emissions from 40 lakesalong a north-south latitudinal transect in Alaska. Biogeosciences 2015; 12: 3197-3223. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Lei Y, Yang K, Immerzeel WW, et al. Critical role of groundwater inflow in sustaining lakewater balance on the western Tibetan Plateau. Geophys ResLett 2022; 49: e2022GL099268. [Article] [NASA ADS] [Google Scholar]
- Shen D, Wang Y, Jia J, et al. Trace metal spatial patterns and associated ecologicaltoxic effects on phytoplankton in Qinghai-Tibet Plateau lake systemsalong with environmental gradients. J Hydrol 2022; 610: 127892. [Article] [CrossRef] [Google Scholar]
- Hrycik AR, Stockwell JD. Under-ice mesocosms reveal the primacy of light but the importanceof zooplankton in winter phytoplankton dynamics. Limnology Oceanography 2021; 66: 481-495. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jia J, Sun K, Lü S, et al. Determining whether Qinghai-Tibet Plateau waterbodieshave acted like carbon sinks or sources over the past 20 years. Sci Bull 2022; 67: 2345-2357. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Denfeld BA, Kortelainen P, Rantakari M, et al. Regional variability and drivers of below ice CO2 in boreal and subarctic lakes. Ecosystems 2016; 19: 461-476. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yan F, Sillanpää M, Kang S, et al. Lakes on the tibetan plateau as conduits of greenhousegases to the atmosphere. JGR BioGeoscis 2018; 123: 2091-2103. [Article] [CrossRef] [Google Scholar]
- Ran L, Butman DE, Battin TJ, et al. Substantial decrease in CO2 emissions fromChinese inland waters due to global change. NatCommun 2021; 12: 1730. [Article] [NASA ADS] [Google Scholar]
- Sun CK, Jia CJ, Wang CS, et al. Real-time and dynamic estimation of CO2 emissionsfrom China’s lakes and reservoirs. TIG 2023; 1: 100031. [Article] [CrossRef] [Google Scholar]
- Jia J, Dungait JAJ, Lu CY, et al. Inland water metabolic carbon processes and associatedbiological mechanisms that drive carbon source-sink instability. TIG 2023; 1: 100035. [Article] [CrossRef] [Google Scholar]
- Li L, Zhang Y, Wu J, et al. Increasing sensitivity of alpine grasslands to climatevariability along an elevational gradient on the Qinghai-Tibet Plateau. Sci TotalEnviron 2019; 678: 21-29. [Article] [Google Scholar]
- Kirillin GB, Shatwell T, Wen LJ. Ice-covered lakes of Tibetan Plateau as solar heat collector. J Geophys Res 2021; 48: e2021GL093429 [Google Scholar]
- Deng WQ, Sun K, Jia JJ, et al. Evolving phytoplankton primary productivity patternsin typical Tibetan Plateau lake systems and associated driving mechanismssince the 2000s. Remote SensingApplications: Society and Environment 2022; 28: 100825 [NASA ADS] [CrossRef] [Google Scholar]
- Dou H, Wang S, Jiang J, et al. On the principles, scale division and procedures ofcomprehensive classification of Chinese lakes. J Lake Sci 1996; 8: 173-178. [Article] [CrossRef] [Google Scholar]
- Wang SM, Dou HS. Annals of Lakes in China (in Chinese). Beijing: SciencePress, 1998 [Google Scholar]
- Lu Y, Gao Y, Dungait JAJ, et al. Understanding how inland lake system environmentalgradients on the Qinghai-Tibet Plateau impact the geographical patternsof carbon and water sources or sink. J Hydrol 2021; 604: 127219. [Article] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.