Open Access
Issue |
Natl Sci Open
Volume 3, Number 5, 2024
|
|
---|---|---|
Article Number | 20230064 | |
Number of page(s) | 12 | |
Section | Physics | |
DOI | https://doi.org/10.1360/nso/20230064 | |
Published online | 18 January 2024 |
- Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature 2001; 410: 259-267. [Article] [CrossRef] [PubMed] [Google Scholar]
- Dyre JC. Colloquium: The glass transition and elastic models of glass-formingliquids. Rev Mod Phys 2006; 78: 953-972. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zeng Q, Sheng H, Ding Y, et al. Long-range topological order in metallic glass. Science 2011; 332: 1404-1406. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ma E. Tuningorder in disorder. Nat Mater 2015; 14: 547-552. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Perepezko JH. Nucleation-controlled reactions and metastable structures. Prog Mater Sci 2004; 49: 263-284. [Article] [CrossRef] [Google Scholar]
- Richert R. Physicalaging and heterogeneous dynamics. Phys RevLett 2010; 104: 085702. [Article] [Google Scholar]
- Berthier L, Biroli G. Theoreticalperspective on the glass transition and amorphous materials. Rev Mod Phys 2011; 83: 587-645. [Article]arxiv:1011.2578 [NASA ADS] [CrossRef] [Google Scholar]
- Zheng Q, Zhang Y, Montazerian M, et al. Understanding glass through differential scanning calorimetry. Chem Rev 2019; 119: 7848-7939. [Article] [CrossRef] [PubMed] [Google Scholar]
- Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behaviorof amorphous alloys. Prog MaterSci 2019; 104: 250-329. [Article] [Google Scholar]
- Wang W. Rolesof minor additions in formation and properties of bulk metallic glasses. Prog Mater Sci 2007; 52: 540-596. [Article] [CrossRef] [Google Scholar]
- Ediger MD. Perspective: Highly stable vapor-deposited glasses. J ChemPhys 2017; 147: 210901. [Article] [NASA ADS] [Google Scholar]
- Swallen SF, Kearns KL, Mapes MK, et al. Organic glasses with exceptional thermodynamic andkinetic stability. Science 2007; 315: 353-356. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kearns KL, Swallen SF, Ediger MD, et al. Influence of substrate temperature on the stabilityof glasses prepared by vapor deposition. J Chem Phys 2007; 127: 154702. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Guo Y, Morozov A, Schneider D, et al. Ultrastable nanostructured polymer glasses. Nat Mater 2012; 11: 337-343. [Article] [CrossRef] [PubMed] [Google Scholar]
- Yu HB, Luo Y, Samwer K. Ultrastablemetallic glass. Adv Mater 2013; 25: 5904-5908. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Singh S, Ediger MD, de Pablo JJ. Ultrastable glasses from in silico vapour deposition. Nat Mater 2013; 12: 139-144. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Gujral A, Gómez J, Jiang J, et al. Highly organized smectic-like packing in vapor-depositedglasses of a liquid crystal. Chem Mater 2017; 29: 849-858. [Article] [CrossRef] [Google Scholar]
- Luo P, Cao CR, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates. Nat Commun 2018; 9: 1389. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yu HB, Tylinski M, Guiseppi-Elie A, et al. Suppression of β relaxationin vapor-deposited ultrastable glasses. Phys RevLett 2015; 115: 185501. [Article] [Google Scholar]
- Qiao JC, Pelletier JM. Isochronal and isothermal crystallization in Zr55Cu30Ni5 Al10 bulk metallic glass. TransNonferrous Met Soc China 2012; 22: 577-584. [Article] [CrossRef] [Google Scholar]
- Venkataraman S, Rozhkova E, Eckert J, et al. Thermal stability and crystallization kinetics of Cu-reinforcedCu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling:The effect of particulate reinforcement. Intermetallics 2005; 13: 833-840. [Article] [CrossRef] [Google Scholar]
- Ma CF, Wang F, Huang P, et al. Hillock growth in CuZr metallic glass. Thin Solid Films 2015; 589: 681-685. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao Y, Shang B, Zhang B, et al. Ultrastable metallic glass by room temperature aging. SciAdv 2022; 8: eabn3623. [Article] [NASA ADS] [MathSciNet] [Google Scholar]
- Cheng Y, Yang Q, Wang J, et al. Highly tunable β-relaxationenables the tailoring of crystallization in phase-change materials. Nat Commun 2022; 13: 7352. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yang Q, Peng SX, Wang Z, et al. Shadow glass transition as a thermodynamic signatureof β relaxation in hyper-quenched metallicglasses. Natl Sci Rev 2020; 7: 1896-1905. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pan J, Wang YX, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallicglass. Nat Commun 2018; 9: 560. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ketov SV, Sun YH, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermalstrain. Nature 2015; 524: 200-203. [Article] [CrossRef] [PubMed] [Google Scholar]
- Velikov V, Borick S, Angell CA. The glass transition of water, based on hyperquenching experiments. Science 2001; 294: 2335-2338. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hu L, Zhou C, Zhang C, et al. Thermodynamic anomaly of the sub-Tg relaxation in hyperquenched metallic glasses. J ChemPhys 2013; 138: 174508. [Article] [NASA ADS] [Google Scholar]
- Liu YH, Fujita T, Aji DPB, et al. Structural origins of Johari-Goldstein relaxation ina metallic glass. Nat Commun 2014; 5: 3238. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Inoue A, Masumoto T, Chen HS. Enthalpy relaxation behaviour of metal-metal (Zr-Cu) amorphous alloysupon annealing. J Mater Sci 1985; 20: 4057-4068. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yue Y, Angell CA. Clarifying the glass-transition behaviour of water by comparisonwith hyperquenched inorganic glasses. Nature 2004; 427: 717-720. [Article] [CrossRef] [PubMed] [Google Scholar]
- Pries J, Wei S, Wuttig M, et al. Switching between crystallization from the glassy andthe undercooled liquid phase in phase change material Ge2Sb2Te5. Adv Mater 2019; 31: 1900784. [Article] [Google Scholar]
- Yu HB, Wang WH, Bai HY, et al. The β-relaxation in metallicglasses. Natl Sci Rev 2014; 1: 429-461. [Article] [CrossRef] [Google Scholar]
- Yue YZ. Characteristic temperatures of enthalpy relaxation in glass. J Non-CrystallineSolids 2008; 354: 1112-1118. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gao S, Koh YP, Simon SL. Calorimetric glass transition of single polystyrene ultrathin films. Macromolecules 2013; 46: 562-570. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Koh YP, Grassia L, Simon SL. Structural recovery of a single polystyrene thin film using nanocalorimetryto extend the aging time and temperature range. ThermoChimActa 2015; 603: 135-141. [Article] [CrossRef] [Google Scholar]
- Gao Y, Zhao B, Vlassak JJ, et al. Reprint of: Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibriumconditions. Prog MaterSci 2021; 120: 100819. [Article] [Google Scholar]
- Androsch R, Schick C, Schmelzer JWP. Sequence of enthalpy relaxation, homogeneous crystal nucleation andcrystal growth in glassy polyamide 6. Eur PolymJ 2014; 53: 100-108. [Article] [CrossRef] [Google Scholar]
- Evenson Z, Gallino I, Busch R. Theeffect of cooling rates on the apparent fragility of Zr-based bulkmetallic glasses. J Appl Phys 2010; 107: 123529. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao R, Jiang HY, Luo P, et al. Reversible and irreversible β-relaxations in metallic glasses. Phys RevB 2020; 101: 094203. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yu HB, Yang MH, Sun Y, et al. Fundamental link between β relaxation,excess wings, and cage-breaking in metallic glasses. J Phys Chem Lett 2018; 9: 5877-5883. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou ZY, Sun Y, Gao L, et al. Fundamental links between shear transformation, β relaxation, and string-like motion in metallic glasses. Acta Mater 2023; 246: 118701. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Gao L, Sun Y, Yu HB. Mobility percolation as a source of Johari-Goldstein relaxation inglasses. Phys RevB 2023; 108: 014201. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yu HB, Richert R, Samwer K. Structuralrearrangements governing Johari-Goldstein relaxations in metallicglasses. Sci Adv 2017; 3: e1701577. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Salinga M, Carria E, Kaldenbach A, et al. Measurement of crystal growth velocity in a melt-quenchedphase-change material. Nat Commun 2013; 4: 2371. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Weber H, Orava J, Kaban I, et al. Correlating ultrafast calorimetry, viscosity, and structuralmeasurements in liquid GeTe and Ge15Te85. PhysRev Mater 2018; 2: 093405. [Article] [Google Scholar]
- Wei S, Evenson Z, Stolpe M, et al. Breakdown of the Stokes-Einstein relation above themelting temperature in a liquid phase-change material. SciAdv 2018; 4: eaat8632. [Article]arxiv:1805.01546 [NASA ADS] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.