Open Access
Review
Issue |
Natl Sci Open
Volume 3, Number 5, 2024
|
|
---|---|---|
Article Number | 20230078 | |
Number of page(s) | 27 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20230078 | |
Published online | 21 February 2024 |
- Zhu M, Schmidt OG. Tiny robots and sensors need tiny batteries—Here’s how to do it. Nature 2021; 589: 195-197. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotech 2017; 12: 7-15. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Perkel JM. The Internet of Things comes to the lab. Nature 2017; 542: 125-126. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhu S, Sheng J, Ni J, et al. 3D vertical arrays of nanomaterials for microscaled energy storage devices. Acc Mater Res 2021; 2: 1215-1226. [Article] [CrossRef] [Google Scholar]
- Zhang P, Wang F, Yu M, et al. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem Soc Rev 2018; 47: 7426-7451. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mao L, Meng Q, Ahmad A, et al. Mechanical analyses and structural design requirements for flexible energy storage devices. Adv Energy Mater 2017; 7: 1700535. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ni J, Li L. Cathode architectures for rechargeable ion batteries: progress and perspectives. Adv Mater 2020; 32: 2000288. [Article] [CrossRef] [Google Scholar]
- Hu Y, Wu M, Chi F, et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 2023; 624: 74-79. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hur JI, Smith LC, Dunn B. High areal energy density 3D lithium-ion microbatteries. Joule 2018; 2: 1187-1201. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang X, Wu Z. Zinc based micro-electrochemical energy storage devices: Present status and future perspective. EcoMat 2020; 2: e12042. [Article] [CrossRef] [Google Scholar]
- Zheng S, Shi X, Das P, et al. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv Mater 2019; 31: 1900583. [Article] [CrossRef] [Google Scholar]
- Joshi B, Samuel E, Kim Y, et al. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries. J Mater Sci Tech 2021; 67: 116-126. [Article] [CrossRef] [Google Scholar]
- Kyeremateng NA, Hahn R. Attainable energy density of microbatteries. ACS Energy Lett 2018; 3: 1172-1175. [Article] [Google Scholar]
- Manthiram A. An outlook on lithium ion battery technology. ACS Cent Sci 2017; 3: 1063-1069. [Article] [Google Scholar]
- Ni J, Dai A, Yuan Y, et al. Three-dimensional microbatteries beyond lithium ion. Matter 2020; 2: 1366-1376. [Article] [CrossRef] [Google Scholar]
- Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 2014; 7: 538-551. [Article] [CrossRef] [Google Scholar]
- Wang C, Yang C, Zheng Z. Toward practical high-energy and high-power lithium battery anodes: Present and future. Adv Sci 2022; 9: 2105213. [Article] [CrossRef] [Google Scholar]
- Wang X, Ding YL, Deng YP, et al. Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: Promises and challenges. Adv Energy Mater 2020; 10: 1903864. [Article] [Google Scholar]
- Zheng S, Ma J, Wu ZS, et al. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ Sci 2018; 11: 2001-2009. [Article] [CrossRef] [Google Scholar]
- Zhu S, Wang Q, Ni J. Aqueous transition-metal ion batteries: Materials and electrochemistry. EnergyChem 2023; 5: 100097. [Article] [CrossRef] [Google Scholar]
- Deng X, Sarpong JK, Zhang G, et al. Proton storage chemistry in aqueous zinc-organic batteries: A review. InfoMat 2022; 5: e12382. [Article] [Google Scholar]
- Liu C, Xie X, Lu B, et al. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett 2021; 6: 1015-1033. [Article] [Google Scholar]
- Cheng X, Wang Y, Ni J, et al. Rooting Zn into metallic Na bulk for energetic metal anode. Sci China Mater 2022; 65: 1789-1796. [Article] [CrossRef] [Google Scholar]
- Wu K, Huang J, Yi J, et al. Recent advances in polymer electrolytes for zinc ion batteries: Mechanisms, properties, and perspectives. Adv Energy Mater 2020; 10: 1903977. [Article] [Google Scholar]
- Yan H, Zhang X, Yang Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coord Chem Rev 2022; 452: 214297. [Article] [CrossRef] [Google Scholar]
- Zhang T, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ Sci 2020; 13: 4625-4665. [Article] [CrossRef] [Google Scholar]
- Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020; 4: 771-799. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Dai C, Hu L, Jin X, et al. The emerging of aqueous zinc-based dual electrolytic batteries. Small 2021; 17: 2008043. [Article] [CrossRef] [Google Scholar]
- Li Y, Fu J, Zhong C, et al. Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater 2018; 9: 1802605. [Article] [Google Scholar]
- Lin D, Li Y. Recent advances of aqueous rechargeable zinc-iodine batteries: Challenges, solutions, and prospects. Adv Mater 2022; 34: 2108856. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Ming J, Guo J, Xia C, et al. Zinc-ion batteries: Materials, mechanisms, and applications. Mater Sci Eng-R-Rep 2019; 135: 58-84. [Article] [CrossRef] [Google Scholar]
- Parker JF, Chervin CN, Pala IR, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017; 356: 415-418. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu Q, Zhang H, Xie J, et al. Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy 2020; 2: 521-539. [Article] [CrossRef] [Google Scholar]
- Liu Y, Wu L. Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy 2023; 109: 108290. [Article] [CrossRef] [Google Scholar]
- Wei F, Zeng Y, Guo Y, et al. Recent progress on the heteroatom-doped carbon cathode for zinc ion hybrid capacitors. Chem Eng J 2023; 468: 143576. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yin J, Zhang W, Alhebshi NA, et al. Electrochemical zinc ion capacitors: Fundamentals, materials, and systems. Adv Energy Mater 2021; 11: 2100201. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zheng C, Yao Y, Rui X, et al. Functional MXene-based materials for next-generation rechargeable batteries. Adv Mater 2022; 34: 2204988. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun K, Wei TS, Ahn BY, et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 2013; 25: 4539-4543. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu S, Li Y, Zhu H, et al. Pencil-drawing skin-mountable micro-supercapacitors. Small 2019; 15: 1804037. [Article] [CrossRef] [Google Scholar]
- Pikul JH, Zhang HG, Cho J, et al. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 2013; 4: 1732. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhu R, Xiong Z, Yang H, et al. Anode/cathode dual-purpose aluminum current collectors for aqueous zinc-ion batteries. Adv Funct Mater 2022; 33: 2211274. [Article] [Google Scholar]
- Blumen O, Bergman G, Schwatrzman K, et al. Selection criteria for current collectors for highly efficient anode-free Zn batteries. J Mater Chem A 2023; 11: 19970-19980. [Article] [CrossRef] [Google Scholar]
- Dai C, Hu L, Jin X, et al. Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci Adv 2022; 8: eabo6688. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Jin X, Song L, Dai C, et al. A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv Mater 2022; 34: 2109450. [Article] [Google Scholar]
- Liu H, Zhang G, Wang L, et al. Engineering 3D architecture electrodes for high-rate aqueous Zn-Mn microbatteries. ACS Appl Energy Mater 2021; 4: 10414-10422. [Article] [CrossRef] [Google Scholar]
- Wang SB, Ran Q, Wan WB, et al. Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. J Mater Sci Tech 2022; 120: 159-166. [Article] [CrossRef] [Google Scholar]
- Tian Z, Sun Z, Shao Y, et al. Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency. Energy Environ Sci 2021; 14: 1602-1611. [Article] [CrossRef] [Google Scholar]
- Wang Y, Hong X, Guo Y, et al. Wearable textile-based Co-Zn alkaline microbattery with high energy density and excellent reliability. Small 2020; 16: 2000293. [Article] [CrossRef] [Google Scholar]
- Li X, Jin X, Wang Y, et al. All-direct laser patterning zinc-based microbatteries. Adv Funct Mater 2024; 34: 2314060. [Article] [Google Scholar]
- Qu Z, Zhu M, Yin Y, et al. A Sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv Energy Mater 2022; 12: 2200714. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li Y, Zhu M, Karnaushenko DD, et al. Microbatteries with twin-Swiss-rolls redefine performance limits in the sub-square millimeter range. Nanoscale Horiz 2023; 8: 127-132. [Article] [Google Scholar]
- Wu Y, He N, Liang G, et al. Thick-network electrode: Enabling dual working voltage plateaus of Zn-ion micro-battery with ultrahigh areal capacity. Adv Funct Mater 2024; 34: 2301734. [Article] [Google Scholar]
- Jiang Q, Lei Y, Liang H, et al. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater 2020; 27: 78-95. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc-ion storage. Carbon Energy 2021; 4: 60-76. [Article] [Google Scholar]
- Feng Y, Feng Y, Zhang Y, et al. Flexible zinc-ion microbattery based on a VS2/MXene cathode with high cycle life. J Power Sources 2022; 545: 231944. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao B, Wang S, Yu Q, et al. A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode. J Power Sources 2021; 504: 230076. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang Y, Sun S, Wu X, et al. Status and opportunities of zinc ion hybrid capacitors: Focus on carbon materials, current collectors, and separators. Nano-Micro Lett 2023; 15: 78. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhao Z, Wang Z, Yu Y, et al. Localized electron density regulation effect for promoting solid-liquid ion adsorption to enhance areal capacitance of micro-supercapacitors. Small 2023; 19: 2302489. [Article] [CrossRef] [Google Scholar]
- Wang S, Wang Q, Zeng W, et al. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode. Nano-Micro Lett 2019; 11: 70. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cao Z, Liang G, Ho D, et al. Interlayer injection of low-valence Zn atoms to activate mxene-based micro-redox capacitors with battery-type voltage plateaus. Adv Funct Mater 2023; 33: 2303060. [Article] [CrossRef] [Google Scholar]
- Cheng W, Fu J, Hu H, et al. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv Sci 2021; 8: 2100775. [Article] [CrossRef] [Google Scholar]
- Cao Z, Hu H, Ho D. Micro-redoxcapacitor: A hybrid architecture out of the notorious energy-power density dilemma. Adv Funct Mater 2022; 32: 2111805. [Article] [CrossRef] [MathSciNet] [Google Scholar]
- Mao K, Shi J, Zhang Q, et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy 2022; 103: 107791. [Article] [CrossRef] [Google Scholar]
- Li L, Liu W, Jiang K, et al. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nano-Micro Lett 2021; 13: 100. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhang H, Wei Z, Wu J, et al. Interlayer-spacing-regulated MXene/rGO foam for multi-functional zinc-ion microcapacitors. Energy Storage Mater 2022; 50: 444-453. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li A, Wei Z, Wang Y, et al. Flexible quasi-3D zinc ion microcapacitor based on V2O5-PANI cathode and MXene anode. Chem Eng J 2023; 457: 141339. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu G, Ma Z, Li G, et al. All-printed 3D solid-state rechargeable zinc-air microbatteries. ACS Appl Mater Interfaces 2023; 15: 13073-13085. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ren Y, Meng F, Zhang S, et al. CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery. Carbon Energy 2022; 4: 446-457. [Article] [CrossRef] [Google Scholar]
- Ma H, Tian X, Fan J, et al. 3D printing of solid-state zinc-ion microbatteries with ultrahigh capacity and high reversibility for wearable integration design. J Power Sources 2022; 550: 232152. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yan W, Cai X, Tan F, et al. 3D printing flexible zinc-ion microbatteries with ultrahigh areal capacity and energy density for wearable electronics. Chem Commun 2023; 59: 1661-1664. [Article] [CrossRef] [PubMed] [Google Scholar]
- Ahn DB, Kim W, Lee K, et al. Enabling on-demand conformal Zn-ion batteries on non-developable surfaces. Adv Funct Mater 2023; 33: 2211597. [Article] [CrossRef] [Google Scholar]
- Wang X, Zheng S, Zhou F, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. Natl Sci Rev 2020; 7: 64-72. [Article] [CrossRef] [PubMed] [Google Scholar]
- Cai X, Liu Y, Zha J, et al. A flexible and safe planar zinc-ion micro-battery with ultrahigh energy density enabled by interfacial engineering for wearable sensing systems. Adv Funct Mater 2023; 33: 2303009. [Article] [CrossRef] [Google Scholar]
- Jiang K, Zhou Z, Wen X, et al. Fabrications of high-performance planar zinc-ion microbatteries by engraved soft templates. Small 2021; 17: 2007389. [Article] [CrossRef] [Google Scholar]
- Wang H, Xue Y, Song X, et al. Solid solution reinforced V3 CrC3Tx MXene cathodes for Zn-ion micro-supercapacitors with high areal energy density and superior flexibility. J Mater Chem A 2022; 10: 20953-20963. [Article] [CrossRef] [Google Scholar]
- Liu W, Li L, Shen G. A Ti3C2Tx MXene cathode and redox-active electrolyte based flexible Zn-ion microsupercapacitor for integrated pressure sensing application. Nanoscale 2023; 15: 2624-2632. [Article] [CrossRef] [PubMed] [Google Scholar]
- Liu W, Li L, Hu C, et al. Intercalation of small organic molecules into Ti3C2Tx MXene cathodes for flexible high-volume-capacitance Zn-ion microsupercapacitor. Adv Mater Technol 2022; 7: 2200158. [Article] [CrossRef] [Google Scholar]
- Wang P, Huang Z, Chen S, et al. Sustainable removal of nano/microplastics in water by solar energy. Chem Eng J 2022; 428: 131196. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li R, Li L, Jia R, et al. A flexible concentric circle structured zinc-ion micro-battery with electrodeposited electrodes. Small Methods 2020; 4: 2000363. [Article] [CrossRef] [Google Scholar]
- Wang X, Li Y, Wang S, et al. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv Energy Mater 2020; 10: 2000081. [Article] [Google Scholar]
- Wang X, Wang Y, Hao J, et al. Pseudocapacitive zinc cation intercalation with superior kinetics enabled by atomically thin V2O5 nanobelts for quasi-solid-state microbatteries. Energy Storage Mater 2022; 50: 454-463. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang X, Qin J, Hu Q, et al. Multifunctional mesoporous polyaniline/graphene nanosheets for flexible planar integrated microsystem of zinc ion microbattery and gas sensor. Small 2022; 18: 2200678. [Article] [CrossRef] [Google Scholar]
- Zhang W, Guo F, Mi H, et al. Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv Energy Mater 2022; 12: 2202219. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Meng C, Zhou F, Liu H, et al. Water-in-salt ambipolar redox electrolyte extraordinarily boosting high pseudocapacitive performance of micro-supercapacitors. ACS Energy Lett 2022; 7: 1706-1711. [Article] [Google Scholar]
- Yang W, Xu L, Luo W, et al. 3D macroporous frame based microbattery with ultrahigh capacity, energy density, and integrability. Adv Energy Mater 2023; 13: 2300574. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhu Z, Kan R, Wu P, et al. A durable Ni-Zn microbattery with ultrahigh-rate capability enabled by in situ reconstructed nanoporous nickel with epitaxial phase. Small 2021; 17: 2103136. [Article] [CrossRef] [Google Scholar]
- Zhai S, Wang N, Tan X, et al. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv Funct Mater 2021; 31: 2008894. [Article] [CrossRef] [Google Scholar]
- Wang K, Zhang X, Han J, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl Mater Interfaces 2018; 10: 24573-24582. [Article] [Google Scholar]
- Li M, Li Z, Ye X, et al. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl Mater Interfaces 2021; 13: 17110-17117. [Article] [CrossRef] [PubMed] [Google Scholar]
- Lv L, Zhu Z, Liao X, et al. Deeply reconstructed hierarchical Ni-Co microwire for flexible Ni-Zn microbattery with excellent comprehensive performance. Small 2023; 19: 2301913. [Article] [CrossRef] [Google Scholar]
- Wang H, Lu Y, Nie Z, et al. Constructing carbon nanotube hybrid fiber electrodes with unique hierarchical microcrack structure for high-voltage, ultrahigh-rate, and ultralong-life flexible aqueous zinc batteries. Small 2023; 19: 2206338. [Article] [CrossRef] [Google Scholar]
- Zhou Y, Li W, Xie Y, et al. Vertical graphene film enables high-performance quasi-solid-state planar zinc-ion microbatteries. ACS Appl Mater Interfaces 2023; 15: 9486-9493. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Trócoli R, Morata A, Fehse M, et al. High specific power dual-metal-ion rechargeable microbatteries based on LiMn2O4 and zinc for miniaturized applications. ACS Appl Mater Interfaces 2017; 9: 32713-32719. [Article] [CrossRef] [PubMed] [Google Scholar]
- Huang T, Gao B, Zhao S, et al. All-MXenes zinc ion hybrid micro-supercapacitor with wide voltage window based on V2CTx cathode and Ti3C2Tx anode. Nano Energy 2023; 111: 108383. [Article] [CrossRef] [Google Scholar]
- Li X, Ma Y, Yue Y, et al. A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chem Eng J 2022; 428: 130965. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang Z, Ni J, Li L, et al. Theoretical simulation and modeling of three-dimensional batteries. Cell Rep Phys Sci 2020; 1: 100078. [Article] [CrossRef] [Google Scholar]
- Wang Z, Ni J, Li L. Gradient designs for efficient sodium batteries. ACS Energy Lett 2022; 7: 4106-4117. [Article] [Google Scholar]
- Chen A, Guo X, Yang S, et al. Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: Achieving multiple deformabilities. Energy Environ Sci 2021; 14: 3599-3608. [Article] [CrossRef] [Google Scholar]
- McCormick N, Lord J. Digital image correlation. Mater Today 2010; 13: 52-54. [Article] [CrossRef] [Google Scholar]
- Kavdir EÇ, Aydin MD. The investigation of mechanical properties of a structural adhesive via digital image correlation (DIC) technic. Compos Part B-Eng 2019; 173: 106995. [Article] [CrossRef] [Google Scholar]
- Bai C, Ji K, Wang H, et al. Intrinsically stretchable microbattery with ultrahigh deformability for self-powering wearable electronics. ACS Mater Lett 2022; 4: 2401-2408. [Article] [CrossRef] [Google Scholar]
- Li X, Wang D, Ran F. Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater 2023; 56: 351-393. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Zhao S, Zuo Y, Liu T, et al. Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv Energy Mater 2021; 11: 2101749. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Xie J, Lin D, Lei H, et al. Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv Mater 2024; 36: 2306508. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Chen N, Zhang H, Li L, et al. Ionogel electrolytes for high-performance lithium batteries: A review. Adv Energy Mater 2018; 8: 1702675. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Hui X, Zhang P, Li J, et al. In situ integrating highly ionic conductive LDH-array@PVA gel electrolyte and MXene/Zn anode for dendrite-free high-performance flexible Zn-air batteries. Adv Energy Mater 2022; 12: 2201393. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Liu C, Xu W, Mei C, et al. A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide-chitin nanofiber hydrogel electrolyte. Adv Energy Mater 2021; 11: 2003902. [Article] [CrossRef] [Google Scholar]
- Chen K, Huang J, Yuan J, et al. Molecularly engineered cellulose hydrogel electrolyte for highly stable zinc ion hybrid capacitors. Energy Storage Mater 2023; 63: 102963. [Article] [CrossRef] [Google Scholar]
- Fu C, Wang Y, Lu C, et al. Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Mater 2022; 51: 588-598. [Article] [CrossRef] [Google Scholar]
- Sun L, Yao Y, Dai L, et al. Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater 2022; 47: 187-194. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Wang F, Zhang J, Lu H, et al. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat Commun 2023; 14: 4211. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Yun T, Wang X, et al. 2D nanochannels boosting ionic conductivity of zinc-ion “water-in-salt” electrolyte for wearable micro-supercapacitor. Mater Today Energy 2023; 36: 101359. [Article] [CrossRef] [Google Scholar]
- Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotech 2018; 13: 1057-1065. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang Q, Huang L, Chang Q, et al. Gravure-printed interdigital microsupercapacitors on a flexible polyimide substrate using crumpled graphene ink. Nanotechnology 2016; 27: 105401. [Article] [CrossRef] [PubMed] [Google Scholar]
- Heo Y, Sodano HA. Self-healing polyurethanes with shape recovery. Adv Funct Mater 2014; 24: 5261-5268. [Article] [Google Scholar]
- Lin Y, Gao Y, Fan Z. Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv Mater 2017; 29: 1701736. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li H, Liu Z, Liang G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018; 12: 3140-3148. [Article] [Google Scholar]
- Fu K, Wang Y, Yan C, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 2016; 28: 2587-2594. [Article] [Google Scholar]
- Bae J, Oh S, Lee B, et al. High-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries. Energy Storage Mater 2023; 57: 277-288. [Article] [CrossRef] [Google Scholar]
- Nasreldin M, Delattre R, Calmes C, et al. High performance stretchable Li-ion microbattery. Energy Storage Mater 2020; 33: 108-115. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Sun P, Li X, Shao J, et al. High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv Mater 2021; 33: e2006229. [Article] [CrossRef] [PubMed] [Google Scholar]
- Deng R, Ke B, Xie Y, et al. All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett 2023; 15: 73. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Li X, Hou N, et al. Ultra-thin self-powered sensor integration system with multiple charging modes in smart home applications. Mater Today Nano 2023; 23: 100358. [Article] [CrossRef] [Google Scholar]
- Bai C, Zhang J, Chen R, et al. A 4 V planar Li-ion micro-supercapacitor with ultrahigh energy density. ACS Energy Lett 2024; 9: 410-418. [Article] [CrossRef] [Google Scholar]
- Lee G, Kim JW, Park H, et al. Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte. ACS Nano 2019; 13: 855-866. [Article] [Google Scholar]
- Qin J, Wang S, Zhou F, et al. 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte. Energy Storage Mater 2019; 18: 397-404. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Li Y, Zhong C, Liu J, et al. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv Mater 2017; 30: 1703657. [Article] [Google Scholar]
- Xiao X, Xiao X, Zhou Y, et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci Adv 2021; 7: eabl3742. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Chen K, Yan L, Sheng Y, et al. An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 2022; 16: 15261-15272. [Article] [Google Scholar]
- Bi J, Zhang J, Giannakou P, et al. A Highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and perovskite solar cells. Energy Storage Mater 2022; 51: 239-248. [Article] [CrossRef] [Google Scholar]
- Li C, Zhang Q, E S, et al. An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag2O battery to harvest wind energy. J Mater Chem A 2019; 7: 2034-2040. [Article] [CrossRef] [Google Scholar]
- Wang Z, Ruan Z, Ng WS, et al. Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric. Small Methods 2018; 2: 1800150. [Article] [CrossRef] [Google Scholar]
- Li H, Han C, Huang Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci 2018; 11: 941-951. [Article] [CrossRef] [Google Scholar]
- Jiang K, Wen X, Deng Y, et al. Integration of all-printed zinc ion microbattery and glucose sensor toward onsite quick detections. SusMat 2022; 2: 368-378. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yuan Y, Li X, Jiang L, et al. Laser maskless fast patterning for multitype microsupercapacitors. Nat Commun 2023; 14: 3967. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Shao Y, Wei L, Wu X, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat Commun 2022; 13: 3223. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wang J, Yang Y, Wang Y, et al. Working aqueous Zn metal batteries at 100°C. ACS Nano 2022; 16: 15770-15778. [Article] [Google Scholar]
- Shi Y, Wang R, Bi S, et al. An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at −70°C. Adv Funct Mater 2023; 33: 2214546. [Article] [CrossRef] [Google Scholar]
- Duan Y, Lv T, Dong K, et al. A novel hydrogel electrolyte for all-climate high-performance flexible zinc-ion hybrid capacitors within temperature range from −50 to 100°C. Chem Eng J 2023; 474: 145551. [Article] [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.