Open Access
Issue |
Natl Sci Open
Volume 3, Number 5, 2024
|
|
---|---|---|
Article Number | 20230073 | |
Number of page(s) | 14 | |
Section | Chemistry | |
DOI | https://doi.org/10.1360/nso/20230073 | |
Published online | 25 April 2024 |
- Zheng F, Chen Z, Li J, et al. A highly sensitive crispr-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv Sci 2022; 9: e2105231. [Article] [Google Scholar]
- Chen Z, Wu C, Yuan Y, et al. CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. J Nanobiotechnol 2023; 21: 141. [Article] [CrossRef] [Google Scholar]
- Chen Z, Li J, Li T, et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev 2022; 9: nwac104. [Article] [CrossRef] [PubMed] [Google Scholar]
- Qu G, Xia T, Zhou W, et al. Property-activity relationship of black phosphorus at the nano-bio interface: From molecules to organisms. Chem Rev 2020; 120: 2288-2346. [Article] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Tao W, Zhu X, Yu X, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater 2017; 29: 1603276. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Yang B, Yin J, Chen Y, et al. 2D-black-phosphorus-reinforced 3D-printed scaffolds: A stepwise countermeasure for osteosarcoma. Adv Mater 2018; 30: 1705611. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shao J, Xie H, Huang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 2016; 7: 12967. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wild S, Fickert M, Mitrovic A, et al. Lattice opening upon bulk reductive covalent functionalization of black phosphorus. Angew Chem Int Ed 2019; 58: 5763-5768. [Article] [CrossRef] [PubMed] [Google Scholar]
- van Druenen M. Degradation of black phosphorus and strategies to enhance its ambient lifetime. Adv Mater Inter 2020; 7: 2001102. [Article] [CrossRef] [Google Scholar]
- Peng L, Abbasi N, Xiao Y, et al. Black phosphorus: Degradation mechanism, passivation method, and application for in situ tissue regeneration. Adv Mater Inter 2020; 7: 2001538. [Article] [CrossRef] [Google Scholar]
- Niu X, Li Y, Zhang Y, et al. Photo-oxidative degradation and protection mechanism of black phosphorus: Insights from ultrafast dynamics. J Phys Chem Lett 2018; 9: 5034-5039. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhou Q, Chen Q, Tong Y, et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew Chem Int Ed 2016; 55: 11437-11441. [Article] [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Zhang X, Lei L, et al. Ph-dependent degradation of layered black phosphorus: Essential role of hydroxide ions. Angew Chem Int Ed 2019; 58: 467-471. [Article] [CrossRef] [PubMed] [Google Scholar]
- Plutnar J, Sofer Z, Pumera M. Products of degradation of black phosphorus in protic solvents. ACS Nano 2018; 12: 8390-8396. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Yang B, Wan B, et al. Degradation of black phosphorus: A real-time 31P NMR study. 2D Mater 2016; 3: 035025. [Article] [CrossRef] [Google Scholar]
- Zhang T, Wan Y, Xie H, et al. Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J Am Chem Soc 2018; 140: 7561-7567. [Article] [CrossRef] [PubMed] [Google Scholar]
- Long J, Yao Z, Zhang W, et al. Regulation of osteoimmune microenvironment and osteogenesis by 3D-printed PLAG/black phosphorus scaffolds for bone regeneration. Adv Sci 2023; 10: 2302539. [Article] [Google Scholar]
- Xu Y, Mo J, Wei W, et al. Oxidized black phosphorus nanosheets as an inorganic antiresorptive agent. CCS Chem 2021; 3: 1105-1115. [Article] [CrossRef] [Google Scholar]
- Li Y, Fang Q, Sheng JYH, et al. Cancer cell-specific autophagy activation using phosphorus-based nanoplatform as anabolism activator. ACS Mater Lett 2023; 5: 2028-2038. [Article] [CrossRef] [Google Scholar]
- Zoroddu MA, Aaseth J, Crisponi G, et al. The essential metals for humans: A brief overview. J Inorg Biochem 2019; 195: 120-129. [Article] [CrossRef] [PubMed] [Google Scholar]
- Chen W, Ouyang J, Yi X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 2018; 30: 1703458. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Guo Z, Chen S, Wang Z, et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv Mater 2017; 29: 1703811. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Shao X, Ding Z, Zhou W, et al. Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. Nat Nanotechnol 2021; 16: 1150-1160. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Ahmed T, Balendhran S, Karim MN, et al. Degradation of black phosphorus is contingent on UV-blue light exposure. npj 2D Mater Appl 2017; 1: 18. [Article] [CrossRef] [Google Scholar]
- Favron A, Gaufrès E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater 2015; 14: 826-832. [Article] [CrossRef] [PubMed] [Google Scholar]
- Khatami SH, Vakili O, Movahedpour A, et al. Laccase: Various types and applications. Biotech App Biochem 2022; 69: 2658-2672. [Article] [CrossRef] [PubMed] [Google Scholar]
- Mo J, Xie Q, Wei W, et al. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona. Nat Commun 2018; 9: 2480. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Alsaffar F, Alodan S, Alrasheed A, et al. Raman sensitive degradation and etching dynamics of exfoliated black phosphorus. Sci Rep 2017; 7: 44540. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wu S, He F, Xie G, et al. Black phosphorus: Degradation favors lubrication. Nano Lett 2018; 18: 5618-5627. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- van Druenen M, Davitt F, Collins T, et al. Evaluating the surface chemistry of black phosphorus during ambient degradation. Langmuir 2019; 35: 2172-2178. [Article] [CrossRef] [PubMed] [Google Scholar]
- Wang H, Yang X, Shao W, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc 2015; 137: 11376-11382. [Article] [CrossRef] [PubMed] [Google Scholar]
- Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996; 6: 15-50. [Article] [Google Scholar]
- Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996; 54: 11169-11186. [Article] [CrossRef] [PubMed] [Google Scholar]
- Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J Phys-Condens Matter 2010; 22: 022201. [Article] [CrossRef] [PubMed] [Google Scholar]
- Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 2000; 113: 9901-9904. [Article] [NASA ADS] [CrossRef] [Google Scholar]
- Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976; 13: 5188-5192. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.