Issue |
Natl Sci Open
Volume 3, Number 6, 2024
Special Topic: Key Materials for Carbon Neutrality
|
|
---|---|---|
Article Number | 20240010 | |
Number of page(s) | 16 | |
Section | Materials Science | |
DOI | https://doi.org/10.1360/nso/20240010 | |
Published online | 24 May 2024 |
- Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries. Adv Mater 2018; 30: 1800561 [CrossRef] [Google Scholar]
- Schmuch R, Wagner R, Hörpel G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 2018; 3: 267-278. [NASA ADS] [CrossRef] [Google Scholar]
- Kim J, Lee H, Cha H, et al. Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 2018; 8: 1702028 [CrossRef] [Google Scholar]
- Li W, Erickson EM, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy 2020; 5: 26-34. [NASA ADS] [CrossRef] [Google Scholar]
- Li M, Lu J. Cobalt in lithium-ion batteries. Science 2020; 367: 979-980. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Castelvecchi DJN. Electric cars and batteries: How will the world produce enough? Nature 2021, 596: 336-339 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sovacool BK. The precarious political economy of cobalt: Balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. Extr Ind Soc 2019, 6: 915-939 [NASA ADS] [Google Scholar]
- Liu T, Yu L, Liu J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat Energy 2021; 6: 277-286. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Yan P, Zheng J, Chen T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commun 2018; 9: 2437 [CrossRef] [PubMed] [Google Scholar]
- Edström K, Gustafsson T, Thomas JO. The cathode–electrolyte interface in the Li-ion battery. Electrochim Acta 2004; 50: 397-403. [CrossRef] [Google Scholar]
- Miller DJ, Proff C, Wen JG, et al. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv Energy Mater 2013; 3: 1098-1103. [NASA ADS] [CrossRef] [Google Scholar]
- Zhang L, Xiao L, Zheng J, et al. Effect of Nb5+ doping and LiNbO3 coating on the structure and surface of a LiNi0.8Mn0.2O2 cathode material for lithium-ion batteries. J Electrochem Soc 2021; 168: 110528 [NASA ADS] [CrossRef] [Google Scholar]
- Yu L, Wen J. Unveiling the roles of Co and Mn in structural stability for Ni-rich cathodes. Microsc Microanal 2021; 27: 3436-3438. [NASA ADS] [CrossRef] [Google Scholar]
- Li J, Wang L, Zhang Q, et al. Synthesis and characterization of LiNi0.6Mn0.4−xCoxO2 as cathode materials for Li-ion batteries. J Power Sources 2009; 189: 28-33. [NASA ADS] [CrossRef] [Google Scholar]
- Liu T, Yu L, Lu J, et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat Commun 2021; 12: 6024 [CrossRef] [PubMed] [Google Scholar]
- Ye T, Li Z, Yan H, et al. Magnetic frustration effect on the rate performance of LiNi0.6Co0.4−xMnxO2 cathodes for lithium-ion batteries. Adv Energy Mater 2022; 12: 2201556 [CrossRef] [Google Scholar]
- Caurant D, Baffler N, Bianchi V, et al. Preparation by a ‘chimie douce’ route and characterization of (LiNizMn1–zO2)(0.5≤z≤1) cathode materials. J Mater Chem 1996; 6: 1149-1155. [CrossRef] [Google Scholar]
- Lee W, Muhammad S, Kim T, et al. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv Energy Mater 2018; 8: 1701788 [CrossRef] [Google Scholar]
- Cho DH, Jo CH, Cho W, et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J Electrochem Soc 2014; 161: A920-A926. [CrossRef] [Google Scholar]
- Zhang W, Sun X, Tang Y, et al. Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J Am Chem Soc 2019; 141: 14038-14042. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Cai M, Dong Y, Xie M, et al. Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nat Energy 2023; 8: 159-168. [NASA ADS] [CrossRef] [Google Scholar]
- Yoon M, Dong Y, Hwang J, et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat Energy 2021; 6: 362-371. [NASA ADS] [CrossRef] [Google Scholar]
- Toby BH, Von Dreele RB. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J Appl Crystlogr 2013; 46: 544-549. [Google Scholar]
- Shen Z, Cao L, Rahn CD, et al. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J Electrochem Soc 2013; 160: A1842-A1846. [CrossRef] [Google Scholar]
- Grenier A, Kamm GE, Li Y, et al. Nanostructure transformation as a signature of oxygen redox in Li-rich 3d and 4d cathodes. J Am Chem Soc 2021; 143: 5763-5770. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Peng L, Liu S, et al. Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry. Mar Pet Geol 2019; 102: 116-125. [NASA ADS] [CrossRef] [Google Scholar]
- Kim Y, Park H, Warner JH, et al. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett 2021; 6: 941-948. [CrossRef] [Google Scholar]
- Kim J, Ma H, Cha H, et al. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ Sci 2018; 11: 1449-1459. [CrossRef] [Google Scholar]
- Tao F, Yan X, Liu JJ, et al. Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage. Electrochim Acta 2016; 210: 548-556. [CrossRef] [Google Scholar]
- Kim Y, Park H, Shin K, et al. Rational design of coating ions via advantageous surface reconstruction in high-nickel layered oxide cathodes for lithium-ion batteries. Adv Energy Mater 2021; 11: 2101112 [CrossRef] [Google Scholar]
- Liu Z, Yu A, Lee JY. Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources 1999; 81-82: 416-419. [NASA ADS] [CrossRef] [Google Scholar]
- Li H, Cormier M, Zhang N, et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc 2019, 166: A429 [NASA ADS] [CrossRef] [Google Scholar]
- Zheng J, Ye Y, Liu T, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc Chem Res 2019; 52: 2201-2209. [CrossRef] [PubMed] [Google Scholar]
- Tucker MC, Reimer JA, Cairns EJ, et al. 7Li NMR studies of chemically-delithiated Li1-xCoO2. J Phys Chem B 2002; 106: 3842-3847. [CrossRef] [Google Scholar]
- Kim H, Lee S, Cho H, et al. Enhancing interfacial bonding between anisotropically oriented grains using a glue-nanofiller for advanced Li-ion battery cathode. Adv Mater 2016; 28: 4705-4712. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Zheng J, Lu J, Amine K, et al. Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy 2017; 33: 497-507. [NASA ADS] [CrossRef] [Google Scholar]
- Yano A, Hikima K, Hata J, et al. Kinetics and stability of Li-ion transfer at the LiCoO2 (104) plane and electrolyte interface. J Electrochem Soc 2018; 165: A3221-A3229. [CrossRef] [Google Scholar]
- Noh HJ, Youn S, Yoon CS, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 2013; 233: 121-130. [CrossRef] [Google Scholar]
- Lu Y, Zeng X, Wang J, et al. Ultrathin LiV2O4 layers modified LiNi0.5Co0.2Mn0.3O2 single-crystal cathodes with enhanced activity and stability. Adv Mater Inter 2019; 6: 1901368 [CrossRef] [Google Scholar]
- Shao M, Shang C, Zhang F, et al. Selective adsorption-involved formation of NMC532/PANI microparticles with high ageing resistance and improved electrochemical performance. J Energy Chem 2021; 54: 668-679. [CrossRef] [Google Scholar]
- Yu H, Wang S, Hu Y, et al. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy Environ 2022; 7: 266-274. [NASA ADS] [CrossRef] [Google Scholar]
- Li S, Fu X, Zhou J, et al. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J Mater Chem A 2016; 4: 5823-5827. [CrossRef] [Google Scholar]
- Liu S, Chen X, Zhao J, et al. Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V. J Power Sources 2018; 374: 149-157. [NASA ADS] [CrossRef] [Google Scholar]
- Yao X, Xu Z, Yao Z, et al. Oxalate co-precipitation synthesis of LiNi0.6Co0.2Mn0.2O2 for low-cost and high-energy lithium-ion batteries. Mater Today Commun 2019; 19: 262-270. [CrossRef] [Google Scholar]
- Hao S, Zhang D, Li Y, et al. Multifunctionality of cerium decoration in enhancing the cycling stability and rate capability of a nickel-rich layered oxide cathode. Nanoscale 2021, 13: 20213-20224 [CrossRef] [PubMed] [Google Scholar]
- Jiang T, Zhu B, Shen H, et al. Improved high-potential property of Ni-rich LiNi0.8Co0.1Mn0.1O2 with a garnet ceramic LLZTO surface modification in Li-ion batteries. ACS Appl Energy Mater 2021; 5: 305-315. [Google Scholar]
- Dalkilic M, Schmidt A, Schladt TD, et al. Synthesis of tantalum doped NMC811 and its impact on crystal structure and electrochemical performance at higher upper cut-off voltage. J Electrochem Soc 2022; 169: 090504 [CrossRef] [Google Scholar]
- Li H, Zhang N, Li J, et al. Updating the structure and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J Electrochem Soc 2018; 165: A2985-A2993. [CrossRef] [Google Scholar]
- Ryu H-H, Park K-J, Yoon CS, et al. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem Mater 2018, 30: 1155-1163 [CrossRef] [Google Scholar]
- Hu J, Li L, Hu E, et al. Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries. Nano Energy 2021; 79: 105420 [CrossRef] [Google Scholar]
- Zhao X, Tian Y, Lun Z, et al. Design principles for zero-strain Li-ion cathodes. Joule 2022; 6: 1654-1671. [NASA ADS] [CrossRef] [Google Scholar]
- Kang K, Ceder G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 2006; 74: 094105 [Google Scholar]
- Reed J, Ceder G. Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2. Electrochem Solid-State Lett 2002; 5: A145 [CrossRef] [Google Scholar]
- Zhao X, Ceder G. Zero-strain cathode materials for Li-ion batteries. Joule 2022; 6: 2683-2685. [NASA ADS] [CrossRef] [Google Scholar]
- Liu H, Wolfman M, Karki K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett 2017; 17: 3452-3457. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Yan P, Zheng J, Liu J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy 2018; 3: 600-605. [NASA ADS] [CrossRef] [Google Scholar]
- Wu L, Fu H, Li S, et al. Phase-engineered cathode for super-stable potassium storage. Nat Commun 2023; 14: 644 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Ren Y, Zuo X. Synchrotron X-ray and neutron diffraction, total scattering, and small-angle scattering techniques for rechargeable battery research. Small Methods 2018; 2: 1800064 [CrossRef] [Google Scholar]
- Su L, Choi P, Nakamura N, et al. Multiscale operando X-ray investigations provide insights into electro-chemo-mechanical behavior of lithium intercalation cathodes. Appl Energy 2021; 299: 117315 [NASA ADS] [CrossRef] [Google Scholar]
- Hu Z, Wang K, Che Y, et al. A novel electrolyte additive enables high-voltage operation of nickel-rich oxide/graphite cells. J Phys Chem Lett 2021; 12: 4327-4338. [CrossRef] [PubMed] [Google Scholar]
- Harlow JE, Ma X, Li J, et al. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. J Electrochem Soc 2019; 166: A3031-A3044. [CrossRef] [Google Scholar]
- Gilbert JA, Bareño J, Spila T, et al. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: Diagnostic studies of full cells and harvested electrodes. J Electrochem Soc 2016; 164: A6054-A6065. [Google Scholar]
- Gilbert JA, Shkrob IA, Abraham DP. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J Electrochem Soc 2017; 164: A389-A399. [CrossRef] [Google Scholar]
- Jung R, Strobl P, Maglia F, et al. Temperature dependence of oxygen release from LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode materials for Li-ion batteries. J Electrochem Soc 2018; 165: A2869-A2879. [NASA ADS] [CrossRef] [Google Scholar]
- Zhao W, Zou L, Zhang L, et al. Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm−2 electrodes. Small 2022; 18: e2107357 [CrossRef] [PubMed] [Google Scholar]
- Li W, Liu X, Xie Q, et al. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: An in-depth diagnostic study. Chem Mater 2020; 32: 7796-7804. [CrossRef] [Google Scholar]
- Park C, Lee E, Kim SH, et al. Malonic-acid-functionalized fullerene enables the interfacial stabilization of Ni-rich cathodes in lithium-ion batteries. J Power Sources 2022; 521: 230923 [NASA ADS] [CrossRef] [Google Scholar]
- Dai P, Kong X, Yang H, et al. Synergistic effect of dual-anion additives promotes the fast dynamics and high-voltage performance of Ni-rich lithium-ion batteries by regulating the electrode/electrolyte interface. ACS Appl Mater Interfaces 2022; 14: 39927-39938. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.