Issue
Natl Sci Open
Volume 4, Number 2, 2025
Special Topic: Flexible Electronics and Micro/Nanomanufacturing
Article Number 20240014
Number of page(s) 15
Section Engineering
DOI https://doi.org/10.1360/nso/20240014
Published online 31 July 2024
  • Krokstad S. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021; 398: 957-980 [Google Scholar]
  • Peter L, Noury N, Cerny M. A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising? IRBM 2014; 35: 271-282 [Google Scholar]
  • Lass J, Meigas I C, Karaiet D, et al. Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. Proc. 26th Annu. Int Conf IEEE Eng Med Biol Soc 2004; 2239-2242 [Google Scholar]
  • Celler BG, Le P, Basilakis J, et al. Improving the quality and accuracy of non-invasive blood pressure measurement by visual inspection and automated signal processing of the Korotkoff sounds. Physiol Meas 2017; 38: 1006-1022. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Chen W, Kobayashi T, Ichikawa S, et al. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med Biol Eng Comput 2000; 38: 569-574. [Article] [PubMed] [Google Scholar]
  • Barvik D, Cerny M, Penhaker M, et al. Noninvasive continuous blood pressure estimation from pulse transit time: A review of the calibration models. IEEE Rev Biomed Eng 2021; 15: 138-151. [Article] [Google Scholar]
  • Nabeel PM, Karthik S, Joseph J, et al. Arterial blood pressure estimation from local pulse wave velocity using dual-element photoplethysmograph probe. IEEE Trans Instrum Meas 2018; 67: 1399-1408. [Article] [NASA ADS] [Google Scholar]
  • Pereira T, Santos I, Oliveira T, et al. Characterization of optical system for hemodynamic multi-parameter assessment. Cardiovasc Eng Tech 2013; 4: 87-97. [Article] [CrossRef] [Google Scholar]
  • Ding X, Zhang Y, Tsang HK, et al. A new modeling methodology for continuous cuffless blood pressure measurement. IEEE EMBS Int Conf Biomed Health Inf BHI Las Vegas, NV, USA, 2016, 264-267 [Google Scholar]
  • Fukushima H, Kawanaka H, Bhuiyan M, et al. Cuffless blood pressure estimation using only photoplethysmography based on cardiovascular parameters. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS Osaka, Japan, 2013, 2132-2135 [Google Scholar]
  • Li Y, Wang Z, Zhang L, et al. Characters available in photoplethysmogram for blood pressure estimation: Beyond the pulse transit time. Australas Phys Eng Sci Med 2014; 37: 367-376. [Article] [Google Scholar]
  • Kim JS, Kim KK, Baek HJ, et al. Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiol Meas 2008; 29: 615-624. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Putyatina SY. Measurement of arterial blood pressure by processing pulse wave data. 3rd Annual Siberian Russian Workshop on Electron Devices and Materials Altai, China, 2002, 77-78 [Google Scholar]
  • Meng K, Chen J, Li X, et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv Funct Mater 2019; 29: 1806388. [Article] [Google Scholar]
  • Arndt JO, Klauske J, Mersch F. The diameter of the intact carotid artery in man. Pflügers Archiv 1968; 301: 230-240 [Google Scholar]
  • Meinders JM, Hoeks APG. Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound Med Biol 2004; 30: 147-154. [Article] [Google Scholar]
  • Joseph J, P M N, Shah MI, et al. Arterial compliance probe for cuffless evaluation of carotid pulse pressure. PLoS One 2018; 13: e0202480. [Article] [Google Scholar]
  • Nissen SE, Grines CL, Gurley JC, et al. Application of a new phased-array ultrasound imaging catheter in the assessment of vascular dimensions. In Vivo Comparison to Cineangiography Circulation 1990; 81: 660-666 [Google Scholar]
  • Huynh TH, Jafari R, Chung WY. Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography. IEEE Trans Biomed Eng 2019; 66: 967-976. [Article] [Google Scholar]
  • Gao M, Cheng HM, Sung SH, et al. Estimation of pulse transit time as a function of blood pressure using a nonlinear arterial tube-load model. IEEE Trans Biomed Eng 2017; 64: 1524-1534. [Article] [Google Scholar]
  • Camasão DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio 2021; 10: 100106. [Article] [Google Scholar]
  • Tardy Y, Meister JJ, Perret F, et al. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin Phys Physiol Meas 1991; 12: 39-54. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Chirinos JA. Arterial stiffness: Basic concepts and measurement techniques. J Cardiovasc Trans Res 2012; 5: 243-255 [CrossRef] [PubMed] [Google Scholar]
  • Boutouyrie P, Fliser D, Goldsmith D, et al. Assessment of arterial stiffness for clinical and epidemiological studies: Methodological considerations for validation and entry into the European Renal and Cardiovascular Medicine registry. Nephrol Dial Transplant 2014; 29: 232-239. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.