Issue
Natl Sci Open
Volume 4, Number 2, 2025
Special Topic: Flexible Electronics and Micro/Nanomanufacturing
Article Number 20240016
Number of page(s) 15
Section Engineering
DOI https://doi.org/10.1360/nso/20240016
Published online 02 September 2024
  • Cho S, Kang S, Pandya A, et al. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 2017; 11: 4346-4357. [Article] [Google Scholar]
  • Yu H, Tian Y, Dirican M, et al. Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. Carbohydr Polyms 2021; 273: 118539. [Article] [CrossRef] [Google Scholar]
  • Li Z, Kong X, Jiang Y, et al. Simultaneously enhancing moisture and mechanical stability of flexible perovskite solar cells via a polyimide interfacial layer. Soft Sci 2021; 1: 4. [Article] [Google Scholar]
  • Liu L, Xiao H, Jin K, et al. 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett 2023; 15: 23. [Article] [Google Scholar]
  • Huang J, Xie Y, You Y, et al. Rational design of electrode materials for advanced supercapacitors: From lab research to commercialization. Adv Funct Mater 2023; 33: 2213095. [Article] [Google Scholar]
  • Singh SB, Kshetri T, Singh TI, et al. Embedded PEDOT:PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor. Chem Eng J 2019; 359: 197-207. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Zhang H, Sun F, Cao G, et al. Bifunctional flexible electrochromic energy storage devices based on silver nanowire flexible transparent electrodes. Int J Extrem Manuf 2023; 5: 015503. [Article] [Google Scholar]
  • Zhang P, Lei IM, Chen G, et al. Integrated 3D printing of flexible electroluminescent devices and soft robots. Nat Commun 2022; 13: 4775. [Article] [Google Scholar]
  • Jung HH, Lee H, Yea J, et al. Wearable electrochemical sensors for real-time monitoring in diabetes mellitus and associated complications. Soft Sci 2024; 4: 15. [Article] [Google Scholar]
  • Niu S, Matsuhisa N, Beker L, et al. A wireless body area sensor network based on stretchable passive tags. Nat Electron 2019; 2: 361-368. [Article] [Google Scholar]
  • Lu Y, Qu X, Zhao W, et al. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020; 2020: 2020/2038560. [Article] [Google Scholar]
  • Huang YA, Ding Y, Bian J, et al. Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 2017; 40: 432-439. [Article] [Google Scholar]
  • Gan TH, Liu A, Tan PK, et al. A bendable wideband dual-polarization conformal phased-array antenna. Anten Wirel Propag Lett 2023; 22: 1952-1956. [Article] [Google Scholar]
  • Ye D, Xie H, Tian Y, et al. Electrohydrodynamic lithography of metallic mesh for optically transparent flexible and conformal antennas. Sci China Tech Sci 2023; 66: 2-12. [Article] [Google Scholar]
  • Datta RS, Syed N, Zavabeti A, et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat Electron 2020; 3: 51-58. [Article] [Google Scholar]
  • Jung HS, Eun K, Kim YT, et al. Experimental and numerical investigation of flexibility of ITO electrode for application in flexible electronic devices. Microsyst Technol 2017; 23: 1961-1970. [Article] [Google Scholar]
  • Fan X, Song W, Lei T, et al. High-efficiency robust organic solar cells using transfer-printed PEDOT:PSS electrodes through interface bonding engineering. Mater Chem Front 2019; 3: 901-908. [Article] [Google Scholar]
  • Lim CK, Lee YS, Choa SH, et al. Effect of polymer binder on the transparent conducting electrodes on stretchable film fabricated by screen printing of silver paste. Int J Polym Sci 2017; 2017: 1-6. [Article] [Google Scholar]
  • Rahman MS, Shiblee MNI, Ahmed K, et al. Flexible and conductive 3D printable polyvinylidene fluoride and poly(N,N-dimethylacrylamide) based gel polymer electrolytes. Macro Mater Eng 2020; 305: 2000262. [Article] [Google Scholar]
  • Zhang H, Zhu X, Tai Y, et al. Recent advances in nanofiber-based flexible transparent electrodes. Int J Extrem Manuf 2023; 5: 032005. [Article] [Google Scholar]
  • Khrapach I, Withers F, Bointon TH, et al. Novel highly conductive and transparent graphene-based conductors. Adv Mater 2012; 24: 2844-2849. [Article] [PubMed] [Google Scholar]
  • Takagi Y, Yamazaki S, Nakatsuji K, et al. Size, shape, and number density of deposits in the graphene solution liquid droplet method. Mater Today Commun 2017; 13: 65-71. [Article] [Google Scholar]
  • Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management. Adv Mater 2014; 26: 4521-4526. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Han N, Sun M, Zhou Y, et al. Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate. Adv Mater 2021; 33: 2005821. [Article] [PubMed] [Google Scholar]
  • Wang T, Lu K, Xu Z, et al. Recent developments in flexible transparent electrode. Crystals 2021; 11: 511. [Article] [NASA ADS] [Google Scholar]
  • Ye S, Rathmell AR, Chen Z, et al. Metal nanowire networks: The next generation of transparent conductors. Adv Mater 2014; 26: 6670-6687. [Article] [NASA ADS] [PubMed] [Google Scholar]
  • Yu S, Li X, Zhao L, et al. Simultaneously improved conductivity and adhesion of flexible AgNW networks via a simple hot lamination process. Synth Met 2020; 267: 116475. [Article] [Google Scholar]
  • Colin J, Jamnig A, Furgeaud C, et al. In situ and real-time nanoscale monitoring of ultra-thin metal film growth using optical and electrical diagnostic tools. Nanomaterials 2020; 10: 2225. [Article] [Google Scholar]
  • Guan H, Zhang D, Yang Y, et al. A novel method for notable reducing phase transition temperature of VO2 films for smart energy efficient windows. Nanomaterials 2019; 10: 58. [Article] [Google Scholar]
  • Ji C, Liu D, Zhang C, et al. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat Commun 2020; 11: 3367. [Article] [Google Scholar]
  • Kim DW, Lee G, Pal M, et al. Highly deformable transparent Au film electrodes and their uses in deformable displays. ACS Appl Mater Interfaces 2020; 12: 41969-41980. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lee D, Bang G, Byun M, et al. Highly flexible, transparent and conductive ultrathin silver film heaters for wearable electronics applications. Thin Solid Films 2020; 697: 137835. [Article] [Google Scholar]
  • Khan A, Liang C, Huang YT, et al. Template-electrodeposited and imprint-transferred microscale metal-mesh transparent electrodes for flexible and stretchable electronics. Adv Eng Mater 2019; 21: 1900723. [Article] [Google Scholar]
  • Kim MH, Joh H, Hong SH, et al. Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films. Curr Appl Phys 2019; 19: 8-13. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Liu J, Xiao L, Rao Z, et al. High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices. Adv Mater Technol 2018; 3: 1800155. [Article] [CrossRef] [Google Scholar]
  • Montenegro EOS, Grassi END, Simões JB, et al. NiTi shape memory alloy cellular meshes: Manufacturing by investment casting and characterization. Smart Mater Struct 2020; 29: 125008. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Nie B, Wang C, Li X, et al. High-performance transparent and conductive films with fully enclosed metal mesh. ACS Appl Mater Interfaces 2021; 13: 40806-40816. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Wang Z, Yi P, Peng L, et al. Continuous fabrication of highly conductive and transparent Ag mesh electrodes for flexible electronics. IEEE Trans Nanotechnol 2017; 16: 687-694. [Article] [NASA ADS] [Google Scholar]
  • Xu JL, Liu YH, Gao X, et al. Embedded Ag grid electrodes as current collector for ultraflexible transparent solid-state supercapacitor. ACS Appl Mater Interfaces 2017; 9: 27649-27656. [Article] [Google Scholar]
  • Choi S, Zhou Y, Haske W, et al. ITO-free large-area flexible organic solar cells with an embedded metal grid. Org Electron 2015; 17: 349-354. [Article] [Google Scholar]
  • Khan A, Lee S, Jang T, et al. High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 2016; 12: 3021-3030. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Um HD, Choi D, Choi A, et al. Embedded metal electrode for organic-inorganic hybrid nanowire solar cells. ACS Nano 2017; 11: 6218-6224. [Article] [Google Scholar]
  • Zhang C, Khan A, Cai J, et al. Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film. ACS Appl Mater Interfaces 2018; 10: 21009-21017. [Article] [Google Scholar]
  • Jiang Y, Ye D, Li A, et al. Transient charge-driven 3D conformal printing via pulsed-plasma impingement. Proc Natl Acad Sci USA 2024; 121: e2402135121. [Article] [Google Scholar]
  • Lee Y, Jin WY, Cho KY, et al. Thermal pressing of a metal-grid transparent electrode into a plastic substrate for flexible electronic devices. J Mater Chem C 2016; 4: 7577-7583. [Article] [Google Scholar]
  • Li H, Li Z, Li N, et al. 3D printed high performance silver mesh for transparent glass heaters through liquid sacrificial substrate electric-field-driven jet. Small 2022; 18: 2107811. [Article] [Google Scholar]
  • Moon JY, Youn DY, Kim C, et al. Metal nanotrough embedded colorless polyimide films: Transparent conducting electrodes with exceptional flexibility and high conductivity. Nanoscale 2018; 10: 7927-7932. [Article] [Google Scholar]
  • Wang H, Ye D, Li A, et al. Self-driven, monopolar electrohydrodynamic printing via dielectric nanoparticle layer. Nano Lett 2024; 24: 9511-9519. [Article] [Google Scholar]
  • Chen Y, Carmichael RS, Carmichael TB. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Appl Mater Interfaces 2019; 11: 31210-31219. [Article] [Google Scholar]
  • Kong M, You I, Lee G, et al. Transparent omni-directional stretchable circuit lines made by a junction-free grid of expandable Au lines. Adv Mater 2021; 33: 2100299. [Article] [PubMed] [Google Scholar]
  • Wei H, Zhang Y, Zhang X, et al. Farming-inspired continuous fabrication of grating flexible transparent film with anisotropic conductivity. Adv Mater Technol 2022; 7: 2101638. [Article] [Google Scholar]
  • Li Z, Li H, Zhu X, et al. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv Sci 2022; 9: 2270092. [Article] [CrossRef] [Google Scholar]
  • Ghosh DS, Chen TL, Pruneri V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl Phys Lett 2010; 96: 41109. [Article] [CrossRef] [Google Scholar]
  • Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater 2012; 22: 421-428. [Article] [Google Scholar]
  • Gennes PG, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer, 2004 [Google Scholar]
  • Zhu X, Wang H, Liao Q, et al. Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces. Exp Therm Fluid Sci 2009; 33: 947-954. [Article] [Google Scholar]
  • Liu C, Cai J, Li X, et al. Flexible and tunable electromagnetic meta-atom based on silver nanowire networks. Mater Des 2019; 181: 107982. [Article] [Google Scholar]
  • Ren P, Liu Y, Song R, et al. Achieving high-resolution electrohydrodynamic printing of nanowires on elastomeric substrates through surface modification. ACS Appl Electron Mater 2020; 3: 192-202. [Article] [Google Scholar]
  • Huang YA, Wu H, Zhu C, et al. Programmable robotized “transfer-and-jet” printing for large, 3D curved electronics on complex surfaces. Int J Extrem Manuf 2021; 3: 045101. [Article] [Google Scholar]
  • Gupta V, Probst PT, Goßler FR, et al. Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. ACS Appl Mater Interfaces 2019; 11: 28189-28196. [Article] [Google Scholar]
  • Mishra M, Singh AP, Gupta V, et al. Tunable EMI shielding effectiveness using new exotic carbon: Polymer composites. J Alloys Compd 2016; 688: 399-403. [Article] [Google Scholar]
  • Zarei M, Li M, Papazekos E, et al. Single-and double-layer embedded metal meshes for flexible, highly transparent electromagnetic interference shielding. Adv Mater Technol 2024; 9: 2302057. [Article] [Google Scholar]
  • Gu J, Hu S, Ji H, et al. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 2020; 31: 185303. [Article] [Google Scholar]
  • Voronin AS, Fadeev YV, Makeev MO, et al. Low cost embedded copper mesh based on cracked template for highly durability transparent EMI shielding films. Materials 2022; 15: 1449. [Article] [Google Scholar]
  • Yang H, Wang L, Wang H, et al. Transparent and high-absolute-effectiveness electromagnetic interference shielding film based on single-crystal graphene. Adv Mater Technol 2022; 7: 2101465. [Article] [Google Scholar]
  • Xu H, Anlage SM, Hu L, et al. Microwave shielding of transparent and conducting single-walled carbon nanotube films. Appl Phys Lett 2007; 90: 183119. [Article] [Google Scholar]
  • Hosseini E, Arjmand M, Sundararaj U, et al. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl Mater Interfaces 2020; 12: 28596-28606. [Article] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.