Open Access
Issue
Natl Sci Open
Volume 4, Number 4, 2025
Article Number 20240022
Number of page(s) 17
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20240022
Published online 09 January 2025
  • Tkalin AV, Chaykovskaya EL. Anthropogenic radionuclides in Peter the Great bay. J Environ Radioact 2000; 51: 229-238. [Article] [Google Scholar]
  • Bezhin NA, Milyutin VV, Kuzmenkova NV, et al. Radionuclides’ recovery from seawater using FIC and FIC A sorbents. Materials 2023; 16: 4181. [Article] [Google Scholar]
  • Inomata Y, Aoyama M, Hirose K, et al. Distribution of radionuclides in surface seawater obtained by an aerial radiological survey. J Nucl Sci Tech 2014; 51: 1059-1063. [Article] [Google Scholar]
  • Ito T, Aramaki T, Otosaka S, et al. Anthropogenic radionuclides in seawater of the japan sea. J Nucl Sci Tech 2005; 42: 90-100. [Article] [Google Scholar]
  • Li R, Yan H, Wang H, et al. Electrodialysis for the volume reduction of the simulated radionuclides containing seawater. J Hazard Mater 2022; 439: 129601. [Article] [Google Scholar]
  • Rozmaric M, Chamizo E, Louw DC, et al. Fate of anthropogenic radionuclides (90Sr, 137Cs, 238Pu, 239Pu, 240Pu, 241Am) in seawater in the northern Benguela upwelling system off Namibia. Chemosphere 2022; 286: 131514. [Article] [Google Scholar]
  • Voronina AV, Noskova AY, Semenishchev VS, et al. Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. J Environ Radioact 2020; 217: 106210. [Article] [Google Scholar]
  • Aliyu AS, Evangeliou N, Mousseau TA, et al. An overview of current knowledge concerning the health and environmental consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Environ Int 2015; 85: 213-228. [Article] [Google Scholar]
  • Nanba K, Konoplev A, Wada T. Behavior of Radionuclides in the Environment III. Singapore: Springer. 2022 [Google Scholar]
  • Taniguchi K, Onda Y, Smith HG, et al. Dataset on the 6-year radiocesium transport in rivers near Fukushima Daiichi nuclear power plant. Sci Data 2020; 7: 433. [Article] [Google Scholar]
  • Buesseler K, Dai M, Aoyama M, et al. Fukushima Daiichi-derived radionuclides in the ocean: Transport, fate, and impacts. Annu Rev Mar Sci 2017; 9: 173-203. [Article] [Google Scholar]
  • Hirose K, Povinec PP. Ten years of investigations of Fukushima radionuclides in the environment: A review on process studies in environmental compartments. J Environ Radioact 2022; 251-252: 106929. [Article] [Google Scholar]
  • Liu Y, Guo XQ, Li SW, et al. Discharge of treated Fukushima nuclear accident contaminated water: Macroscopic and microscopic simulations. Natl Sci Rev 2022; 9: nwab209. [Article] [Google Scholar]
  • Povinec P, Hirose K, Aoyama M. Fukushima accident: Radioactivity Impact on the Environment. Tokyo: Elsevier, 2013 [Google Scholar]
  • Povinec P, Hirose K, Aoyama M. Fukushima Accident: 10 Years After. 2nd ed. Amsterdam: Elsevier, 2021 [Google Scholar]
  • Masson O, Baeza A, Bieringer J, et al. Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European networks. Environ Sci Technol 2011; 45: 7670-7677. [Article] [Google Scholar]
  • Steinhauser G. Fukushima’s forgotten radionuclides: A review of the understudied radioactive emissions. Environ Sci Technol 2014; 48: 4649-4663. [Article] [Google Scholar]
  • Nakanishi T, Sakuma K. Trend of 137Cs concentration in river water in the medium term and future following the Fukushima nuclear accident. Chemosphere 2019; 215: 272-279. [Article] [Google Scholar]
  • Osanai M, Miura M, Tanaka C, et al. Long-term analysis of internal exposure dose-reduction effects by food regulation and food item contribution to dose after the fukushima daiichi nuclear power plant accident. Foods 2023; 12: 1305. [Article] [Google Scholar]
  • Ozawa R. Radiation measurements at Fukushima medical university over a period of 12 years following the nuclear power plant accident. J Radiat Prot Res 2023; 48: 153-161. [Article] [Google Scholar]
  • Ozdemir E, Miwa S, Porcheron E, et al. Aerosol deposition and dispersion during nuclear reactor decommissioning. Nucl Eng Des 2023; 414: 112623. [Article] [Google Scholar]
  • Sakauchi K, Otaki JM. Imaging plate autoradiography for ingested anthropogenic cesium-137 in butterfly bodies: Implications for the biological impacts of the Fukushima nuclear accident. Life 2023; 13: 1211. [Article] [Google Scholar]
  • Takada M, Kuroda Y, Kanai Y, et al. Impacts of environmental decontamination on the rebuilding of returnees’ lives after the Fukushima accident. J Radiol Prot 2023; 43: 031513. [Article] [Google Scholar]
  • Teien HC, Wada T, Kashparov V, et al. Transfer of 129I to freshwater fish species within Fukushima and Chernobyl exclusion zones. J Environ Radioact 2023; 270: 107269. [Article] [Google Scholar]
  • Tsumune D, Bryan FO, Lindsay K, et al. Simulated inventory and distribution of 137Cs released from multiple sources in the global ocean. Mar Pollution Bull 2023; 197: 115663. [Article] [Google Scholar]
  • Yabusaki S, Asai K. Estimation of groundwater and spring water residence times near the coast of Fukushima, Japan. Groundwater 2023; 61: 431-445. [Article] [Google Scholar]
  • Walling DE, Quine TA, Rowan JS. Fluvial transport and redistribution of Chernobyl fallout radionuclides. Hydrobiologia 1992; 235-236: 231-246. [Article] [Google Scholar]
  • Deji, Yao T, Thompson LG, Davis ME, et al. Westerly drives long-distance transport of radionuclides from nuclear events to glaciers in the Third Pole. J Environ Radioact 2022; 255: 107016. [Article] [Google Scholar]
  • Håkanson L. Modelling the transport of radionuclides from land to water. J Environ Radioact 2004; 73: 267-287. [Article] [Google Scholar]
  • Lee HJ, Jo HY, Nam KP, et al. Measurement, simulation, and meteorological interpretation of medium-range transport of radionuclides to Korea during the Fukushima Dai-Ichi nuclear accident. Ann Nucl Energy 2017; 103: 412-423. [Article] [Google Scholar]
  • Liu LB, Wu S, Cao JJ, et al. Monitoring of atmospheric radionuclides from the Fukushima nuclear accident and assessing their impact on Xi’an, China. Chin Sci Bull 2013; 58: 1585-1591. [Article] [Google Scholar]
  • Mathieu A, Kajino M, Korsakissok I, et al. Fukushima Daiichi-derived radionuclides in the atmosphere, transport and deposition in Japan: A review. Appl Geochem 2018; 91: 122-139. [Article] [Google Scholar]
  • Mori K, Tada K, Tawara Y, et al. Integrated watershed modeling for simulation of spatiotemporal redistribution of post-fallout radionuclides: Application in radiocesium fate and transport processes derived from the Fukushima accidents. Environ Model Software 2015; 72: 126-146. [Article] [Google Scholar]
  • Otosaka S, Amano H, Ito T, et al. Anthropogenic radionuclides in sediment in the Japan Sea: Distribution and transport processes of particulate radionuclides. J Environ Radioact 2006; 91: 128-145. [Article] [Google Scholar]
  • Semizhon T, Röllin S, Spasova Y, et al. Transport and distribution of artificial gamma-emitting radionuclides in the River Yenisei and its sediment. J Environ Radioact 2010; 101: 385-402. [Article] [Google Scholar]
  • Freney E, Sellegri K, Nicosia A, et al. Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry. Atmos Chem Phys 2021; 21: 10625-10641. [Article] [Google Scholar]
  • Franklin EB, Amiri S, Crocker D, et al. Anthropogenic and biogenic contributions to the organic composition of coastal submicron sea spray aerosol. Environ Sci Technol 2022; 56: 16633-16642. [Article] [Google Scholar]
  • Michaud JM, Thompson LR, Kaul D, et al. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nat Commun 2018; 9: 2017. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • van Pinxteren M, Zeppenfeld S, Wadinga Fomba K, et al. Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: Sea-to-air transfer and atmospheric in situ formation. Atmos Chem Phys 2023; 23: 6571-6590. [Article] [Google Scholar]
  • Song Y, Li J, Tsona NT, et al. Enrichment of short-chain organic acids transferred to submicron sea spray aerosols. Sci Total Environ 2022; 851: 158122. [Article] [Google Scholar]
  • Zinke J, Freitas G, Salter MEet al. Quantification and characterization of microbial emissions over the Northeastern Atlantic using mesocosm experiments. ACS ES&T Air 2024; 1: 162–174 [Google Scholar]
  • Povinec PP, Sýkora I, Gera M, et al. Fukushima-derived radionuclides in ground-level air of Central Europe: A comparison with simulated forward and backward trajectories. J Radioanal Nucl Chem 2012; 295: 1171-1176. [Article] [Google Scholar]
  • Aili A, Abuduwaili J, Xu H, et al. A cluster analysis of forward trajectory to identify the transport pathway of salt-dust particles from dried bottom of aral sea, central asia. Atmosphere 2021; 12: 764. [Article] [CrossRef] [Google Scholar]
  • Zhang Y, Wang N, Zhang B, et al. Interannual variation and chemical characterization of major water-soluble inorganic ions in snow across Northwest China. Front Earth Sci 2023; 11: 1099178. [Article] [Google Scholar]
  • Auvil NC, Vazquez de Vasquez MG, Allen HC. Zinc-carboxylate binding in mixed octadecanoic acid and octadecanol monolayers on proxy seawater solution surfaces. ACS Earth Space Chem 2021; 5: 2947-2956. [Article] [Google Scholar]
  • Liu L, Du L, Xu L, et al. Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation. Environ Res 2022; 206: 112555. [Article] [Google Scholar]
  • Song Y, Li J, Tsona Tchinda N, et al. Role of sea spray aerosol at the air-sea interface in transporting aromatic acids to the atmosphere. Atmos Chem Phys 2024; 24: 5847-5862. [Article] [Google Scholar]
  • Xu M, Tsona Tchinda N, Li J, et al. Insoluble lipid film mediates transfer of soluble saccharides from the sea to the atmosphere: The role of hydrogen bonding. Atmos Chem Phys 2023; 23: 2235-2249. [Article] [Google Scholar]
  • Quinn PK, Coffman DJ, Johnson JE, et al. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nat Geosci 2017; 10: 674-679. [Article] [Google Scholar]
  • Xu W, Ovadnevaite J, Fossum KN, et al. Sea spray as an obscured source for marine cloud nuclei. Nat Geosci 2022; 15: 282-286. [Article] [Google Scholar]
  • Sha B, Johansson JH, Tunved P, et al. Sea spray aerosol (SSA) as a source of perfluoroalkyl acids (PFAAs) to the atmosphere: field evidence from long-term air monitoring. Environ Sci Technol 2021; 56: 228-238. [Article] [Google Scholar]
  • Hernandez-Jaramillo DC, Harrison L, Kelaher B, et al. Evaporative cooling does not prevent vertical dispersion of effervescent seawater aerosol for brightening clouds. Environ Sci Technol 2023; 57: 20559-20570. [Article] [Google Scholar]
  • Lenain L, Melville WK. Evidence of sea-state dependence of aerosol concentration in the marine atmospheric boundary layer. J Phys Oceanogr 2017; 47: 69-84. [Article] [Google Scholar]
  • Crawford J, Cohen DD, Chambers SD, et al. Impact of aerosols of sea salt origin in a coastal basin: Sydney, Australia. Atmos Environ 2019; 207: 52-62. [Article] [Google Scholar]
  • Parameswaran K. Influence of micrometeorological features on coastal boundary layer aerosol characteristics at the tropical station, Trivandrum. J Earth Syst Sci 2001; 110: 247-265. [Article] [Google Scholar]
  • Porter JN, Lienert BR, Sharma SK, et al. Vertical and horizontal aerosol scattering fields over Bellows Beach, Oahu, during the SEAS experiment. J Atmos Ocean Technol 2003; 20: 1375-1387. [Article] [Google Scholar]
  • Liu S, Liu CC, Froyd KD, et al. Sea spray aerosol concentration modulated by sea surface temperature. Proc Natl Acad Sci USA 2021; 118: e2020583118. [Article] [Google Scholar]
  • Zhu C, He Q, Zhao Z, et al. Comparative analysis of ozone pollution characteristics between urban area and southern mountainous area of urumqi, china. Atmosphere 2023; 14: 1387. [Article] [Google Scholar]
  • Wang YQ. MeteoInfo: GIS software for meteorological data visualization and analysis. Met Apps 2014; 21: 360-368. [Article] [Google Scholar]
  • Huang X, Chen Y, Meng Y, et al. Mitigating airborne microplastics pollution from perspectives of precipitation and underlying surface types. Water Res 2023; 243: 120385. [Article] [Google Scholar]
  • Wang YQ, Zhang XY, Draxler RR. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Software 2009; 24: 938-939. [Article] [Google Scholar]
  • Saliba G, Chen CL, Lewis S, et al. Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic. Proc Natl Acad Sci USA 2019; 116: 20309-20314. [Article] [Google Scholar]
  • Guzmán E, Santini E, Benedetti A, et al. Surfactant induced complex formation and their effects on the interfacial properties of seawater. Colloids Surfs B-Biointerfaces 2014; 123: 701-709. [Article] [Google Scholar]
  • Hamidian R, Lashkarbolooki M, Amani H. Ion type adjustment with emphasize on the presence of NaCl existence; measuring interfacial tension, wettability and spreading of crude oil in the carbonate reservoir. J Pet Sci Eng 2019; 182: 106266. [Article] [Google Scholar]
  • Ramezani M, Lashkarbolooki M, Abedini R, et al. Role of salinity concomitant with asphaltene and resin on the interfacial tension of ionic liquid from imidazolium family. J Pet Sci Eng 2022; 219: 111117. [Article] [Google Scholar]
  • Steffens SD, Cook EK, Sedlak DL, et al. Under-reporting potential of perfluorooctanesulfonic acid (PFOS) under high-ionic strength conditions. Environ Sci Technol Lett 2021; 8: 1032-1037. [Article] [Google Scholar]
  • Adams EM, Allen HC. Palmitic acid on salt subphases and in mixed monolayers of cerebrosides: application to atmospheric aerosol chemistry. Atmosphere 2013; 4: 315-336. [Article] [Google Scholar]
  • Cochran RE, Jayarathne T, Stone EA, et al. Selectivity across the interface: A test of surface activity in the composition of organic-enriched aerosols from bubble bursting. J Phys Chem Lett 2016; 7: 1692-1696. [Article] [Google Scholar]
  • Sha B, Johansson JH, Benskin JP, et al. Influence of water concentrations of perfluoroalkyl acids (PFAAS) on their size-resolved enrichment in nascent sea spray aerosols. Environ Sci Technol 2021; 55: 9489-9497. [Article] [Google Scholar]
  • Triesch N, van Pinxteren M, Salter M, et al. Sea spray aerosol chamber study on selective transfer and enrichment of free and combined amino acids. ACS Earth Space Chem 2021; 5: 1564-1574. [Article] [Google Scholar]
  • Cravigan LT, Mallet MD, Vaattovaara P, et al. Sea spray aerosol organic enrichment, water uptake and surface tension effects. Atmos Chem Phys 2020; 20: 7955-7977. [Article] [Google Scholar]
  • Shaloski MA, Sobyra TB, Nathanson GM. DCl transport through dodecyl sulfate films on salty glycerol: Effects of seawater ions on gas entry. J Phys Chem A 2015; 119: 12357-12366. [Article] [Google Scholar]
  • Gabriel JL, Aogaichi T, Dearolf CR, et al. Apparent stability constants of magnesium and calcium complexes of tricarboxylates. Anal Lett 2006; 16: 113-127. [Article] [Google Scholar]
  • Song Y, Li T, Zhang X, et al. Effect of different valence metal ions on rice protein fibrillation: Binding mechanism, structural characterization and rheology. Food Biophys 2023; 18: 570-579. [Article] [Google Scholar]
  • Karavoltsos S, Sakellari A, Plavšić M, et al. Metal complexation, FT-IR characterization, and plankton abundance in the marine surface microlayer of coastal areas in the Eastern Mediterranean. Front Mar Sci 2022; 9: 932446. [Article] [Google Scholar]
  • Chang CM, Wang MK. Linear relationship for acidity and stability in hexaaqua metal ions-density functional studies. Chem Phys Lett 1998; 286: 46-50. [Article] [Google Scholar]
  • El-Dossoki FI, Mohamed AAAEW. Thermodynamic parameters of phenylglycine interaction with UO22+, La3+ and Zr4+. BMC Chem 2023; 17: 57. [Article] [Google Scholar]
  • Arulsamy AD. Correlation between ionization and hydration energies. J Solution Chem 2024; 53: 1633-1650. [Google Scholar]
  • Canaval LR, Rode BM. The hydration properties of Eu(II) and Eu(III): An ab initio quantum mechanical molecular dynamics study. Chem Phys Lett 2015; 618: 78-82. [Article] [Google Scholar]
  • Lee CL, Hsi HC, Chang CM. Linear correlation between electronegativity and adsorption energy of hydrated metal ions by carboxyl-functionalized single-walled carbon nanotubes. J Nanopart Res 2023; 25: 59. [Article] [Google Scholar]
  • Marques MA, Caba$ccedil$o MI, Marques MIB, et al. Intermediate-range order in aqueous solutions of salts constituted of divalent ions combined with monovalent counter-ions. J Phys-Condens Matter 2002; 14: 7427-7448. [Article] [Google Scholar]
  • Persson I. Structure and size of complete hydration shells of metal ions and inorganic anions in aqueous solution. Dalton Trans 2024; 53: 15517-15538. [Article] [Google Scholar]
  • Pérez IA, Artuso F, Mahmud M, et al. Applications of air mass trajectories. Adv Meteor 2015; 2015: 1-20. [Article] [Google Scholar]
  • Mukhtarov R, Ibragimova OP, Omarova A, et al. An episode-based assessment for the adverse effects of air mass trajectories on PM2.5 levels in Astana and Almaty, Kazakhstan. Urban Clim 2023; 49: 101541. [Article] [Google Scholar]
  • Godłowska J, Hajto MJ, Tomaszewska AM. Spatial analysis of air masses backward trajectories in order to identify distant sources of fine particulate matter emission / Analiza przestrzenna wstecznych trajektorii mas powietrza w celu rozpoznania odległych źródeł emisji pyłu drobnego. Arch Environ Prot 2015; 41: 28-35. [Article] [Google Scholar]
  • Bok-Badura J, Jakóbik-Kolon A. Cesium ion sorption on hybrid pectin-Prussian blue beads: Batch and column studies to remove radioactive cesium from contaminated wastewater. Hydrometallurgy 2022; 213: 105937. [Article] [Google Scholar]
  • Hong HJ, Park IS, Ryu T, et al. Demonstration of seawater strontium (Sr(II)) extraction and enrichment by a biosorption technique through continuous column operation. Ind Eng Chem Res 2018; 57: 12909-12915. [Article] [Google Scholar]
  • Kameník J, Dulaiova H, Šebesta F, et al. Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples. J Radioanal Nucl Chem 2013; 296: 841-846. [Article] [Google Scholar]
  • Ferrier-Pagès C, Boisson F, Allemand D, et al. Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Mar Ecol Prog Ser 2002; 245: 93-100. [Article] [Google Scholar]
  • Bouchalkha A, Karli R, Alhammadi K. Reusable sensor for strontium sulfate scale monitoring in seawater. Materials 2021; 14: 676. [Article] [Google Scholar]
  • Zhu L, Hou X, Qiao J. Determination of low-level 135Cs and 135Cs/137Cs atomic ratios in large volume of seawater by chemical separation coupled with triple-quadrupole inductively coupled plasma mass spectrometry measurement for its oceanographic applications. Talanta 2021; 226: 122121. [Article] [Google Scholar]
  • Marginson H, MacMillan GA, Wauthy M, et al. Drivers of rare earth elements (REEs) and radionuclides in changing subarctic (Nunavik, Canada) surface waters near a mining project. J Hazard Mater 2024; 471: 134418. [Article] [Google Scholar]
  • Xia X, Chen H, Zhang W. Analysis of the dependence of column-integrated aerosol properties on long-range transport of air masses in Beijing. Atmos Environ 2007; 41: 7739-7750. [Article] [Google Scholar]
  • Anastassopoulos A. An assessment of meteorological effects on air quality in Windsor, Ontario, Canada ― sensitivity to temporal modeling resolution. J Env Inform 2008; 11: 45-50. [Article] [Google Scholar]
  • Tošić I, Unkašević M. Extreme daily precipitation in Belgrade and their links with the prevailing directions of the air trajectories. Theor Appl Climatol 2013; 111: 97-107. [Article] [Google Scholar]
  • Koracin D, Vellore R, Lowenthal DH, et al. Regional source identification using lagrangian stochastic particle dispersion and hysplit backward-trajectory models. J Air Waste Manage Assoc 2011; 61: 660-672. [Article] [Google Scholar]
  • Shi S, Cheng T, Gu X, et al. Biomass burning aerosol characteristics for different vegetation types in different aging periods. Environ Int 2019; 126: 504-511. [Article] [Google Scholar]
  • Escudero M, Stein A, Draxler RR, et al. Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model. J Geophys Res 2006; 111: D06210. [Article] [Google Scholar]
  • Lee S, Ashbaugh L. The impact of trajectory starting heights on the MURA trajectory source apportionment (TSA) method. Atmos Environ 2007; 41: 7022-7036. [Article] [Google Scholar]
  • Zhan MJ, Sun JY, Yin JM. Influence of air masses on particle number concentration and size distribution at Mt. Waliguan, Qinghai Province, China. Sci Cold Arid Reg 2011; 3: 436–440 [Google Scholar]
  • Zhou X, Wu L, Liu Q, et al. Influence of low-level, high-entropy air in the eye on tropical cyclone intensity: A trajectory analysis. J Meteorol Soc Jpn 2020; 98: 1231-1243. [Article] [Google Scholar]
  • Liuzzi V, Della Corte V, Rotundi A, et al. Zero-pressure balloons trajectory prediction: Duster flight simulations. Adv Space Res 2020; 66: 1876-1886. [Article] [Google Scholar]
  • Chai T, Draxler R, Stein A. Source term estimation using air concentration measurements and a Lagrangian dispersion model – Experiments with pseudo and real cesium-137 observations from the Fukushima nuclear accident. Atmos Environ 2015; 106: 241-251. [Article] [Google Scholar]
  • Yang L, Sun L, Wang D, et al. Analysis of precipitable water vapour characteristics from GNSS measurements during the snow season in Liaoning Province, China. Adv Space Res 2021; 67: 2347-2358. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.