Open Access
Issue
Natl Sci Open
Volume 4, Number 4, 2025
Article Number 20240015
Number of page(s) 16
Section Life Sciences and Medicine
DOI https://doi.org/10.1360/nso/20240015
Published online 19 June 2025
  • Sun Y, Ma X, Hu H. Application of nano-drug delivery system based on cascade technology in cancer treatment. Int J Mol Sci 2021; 22: 5698. [Article] [Google Scholar]
  • Amber KT, Maglie R, Solimani F, et al. Targeted therapies for autoimmune bullous diseases: Current status. Drugs 2018; 78: 1527-1548. [Article] [Google Scholar]
  • Yu C, Liu X, Yang J, et al. Combination of immunotherapy with targeted therapy: Theory and practice in metastatic melanoma. Front Immunol 2019; 10: 990. [Article] [CrossRef] [PubMed] [Google Scholar]
  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Aittokallio T. What are the current challenges for machine learning in drug discovery and repurposing?. Expert Opin Drug Discov 2022; 17: 423-425. [Article] [Google Scholar]
  • Pandey M, Fernandez M, Gentile F, et al. The transformational role of GPU computing and deep learning in drug discovery. Nat Mach Intell 2022; 4: 211-221. [Article] [Google Scholar]
  • Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020; 180: 688-702.e13. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Huang J, Xu Y, Xue Y, et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat Biomed Eng 2023; 7: 797-810. [Article] [Google Scholar]
  • Gorgulla C, Boeszoermenyi A, Wang ZF, et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 2020; 580: 663-668. [Article] [Google Scholar]
  • Stecula A, Hussain MS, Viola RE. Discovery of novel inhibitors of a critical brain enzyme using a homology model and a deep convolutional neural network. J Med Chem 2020; 63: 8867-8875. [Article] [Google Scholar]
  • Li Y, Zhang L, Wang Y, et al. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat Commun 2022; 13: 6891. [Article] [Google Scholar]
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 2019; 37: 1038-1040. [Article] [Google Scholar]
  • Deng D, Yang Y, Zou Y, et al. Discovery and evaluation of 3-quinoxalin urea derivatives as potent, selective, and orally available ATM inhibitors combined with chemotherapy for the treatment of cancer via goal-oriented molecule generation and virtual screening. J Med Chem 2023; 66: 9495-9518. [Article] [Google Scholar]
  • Segler MHS, Kogej T, Tyrchan C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 2018; 4: 120-131. [Article] [Google Scholar]
  • Sadybekov AV, Katritch V. Computational approaches streamlining drug discovery. Nature 2023; 616: 673-685. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Tan X, Li C, Yang R, et al. Discovery of pyrazolo[3,4-d]pyridazinone derivatives as selective DDR1 inhibitors via deep learning based design, synthesis, and biological evaluation. J Med Chem 2021; 65: 103-119. [Article] [Google Scholar]
  • Cai H, Zhang H, Zhao D, et al. FP-GNN: A versatile deep learning architecture for enhanced molecular property prediction. Brief Bioinform 2022; 23: bbac408. [Article] [Google Scholar]
  • Zhang Z, Liu Q, Wang H, et al. Motif-based graph self-supervised learning for molecular property prediction. Adv Neural Inf Process Syst 2021; 34: 15870–15882 [Google Scholar]
  • Rong Y, Bian Y, Xu T, et al. Self-supervised graph transformer on large-scale molecular data. Adv Neural Inf Process Syst 2020; 33: 12559–12571 [Google Scholar]
  • Shao J, Gong Q, Yin Z, et al. S2DV: Converting SMILES to a drug vector for predicting the activity of anti-HBV small molecules. Brief Bioinform 2022; 23: bbab593. [Article] [Google Scholar]
  • Zhang XC, Wu CK, Yang ZJ, et al. MG-BERT: Leveraging unsupervised atomic representation learning for molecular property prediction. Brief Bioinform 2021; 22: bbab152. [Article] [Google Scholar]
  • Xue D, Zhang H, Chen X, et al. X-MOL: Large-scale pre-training for molecular understanding and diverse molecular analysis. Sci Bull 2022; 67: 899-902. [Article] [Google Scholar]
  • Wang X, Zhao H, Tu W, et al. Automated 3d pre-training for molecular property prediction. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, 2023, 2419–2430 [Google Scholar]
  • Stärk H, Beaini D, Corso G, et al. 3D infomax improves GNNs for molecular property prediction. In: Proceedings of the 39th International Conference on Machine Learning. PMLR, 2022, 20479–20502 [Google Scholar]
  • Gallegos LC, Luchini G, St John PC, et al. Importance of engineered and learned molecular representations in predicting organic reactivity, selectivity, and chemical properties. Acc Chem Res 2021; 54: 827-836. [Article] [Google Scholar]
  • Zeng X, Xiang H, Yu L, et al. Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework. Nat Mach Intell 2022; 4: 1004-1016. [Article] [Google Scholar]
  • Li J, Telychko M, Yin J, et al. Machine vision automated chiral molecule detection and classification in molecular imaging. J Am Chem Soc 2021; 143: 10177-10188. [Article] [Google Scholar]
  • Pei Y, Wang G, Cao H, et al. A deep-learning pipeline to diagnose pediatric intussusception and assess severity during ultrasound scanning: A multicenter retrospective-prospective study. npj Digit Med 2023; 6: 182. [Article] [Google Scholar]
  • Zhang Z, Xie Y, Xing F, et al. Mdnet: A semantically and visually interpretable medical image diagnosis network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017, 6428–6436 [Google Scholar]
  • Sousa T, Correia J, Pereira V, et al. Generative deep learning for targeted compound design. J Chem Inf Model 2021; 61: 5343-5361. [Article] [Google Scholar]
  • Born J, Manica M. Regression Transformer enables concurrent sequence regression and generation for molecular language modelling. Nat Mach Intell 2023; 5: 432-444. [Article] [Google Scholar]
  • Xie C, Zhuang XX, Niu Z, et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 2022; 6: 76-93. [Article] [Google Scholar]
  • Diao Y, Liu D, Ge H, et al. Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery. Nat Commun 2023; 14: 4552. [Article] [Google Scholar]
  • Renz P, Van Rompaey D, Wegner JK, et al. On failure modes in molecule generation and optimization. Drug Discov Today Technol 2019; 32-33: 55-63. [Article] [Google Scholar]
  • Meyers J, Fabian B, Brown N. De novo molecular design and generative models. Drug Discov Today 2021; 26: 2707-2715. [Article] [Google Scholar]
  • Woodward DF, Jones RL, Narumiya S. International union of basic and clinical pharmacology. LXXXIII: Classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63: 471-538. [Article] [Google Scholar]
  • Lu W, Yu W, He J, et al. Reprogramming immunosuppressive myeloid cells facilitates immunotherapy for colorectal cancer. EMBO Mol Med 2021; 13: e12798. [Article] [Google Scholar]
  • Peng S, Hu P, Xiao YT, et al. Single-cell analysis reveals EP4 as a target for restoring T-cell infiltration and sensitizing prostate cancer to immunotherapy. Clin Cancer Res 2022; 28: 552-567. [Article] [Google Scholar]
  • Bonavita E, Bromley CP, Jonsson G, et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 2020; 53: 1215-1229.e8. [Article] [Google Scholar]
  • Nakao K, Murase A, Ohshiro H, et al. CJ-023,423, a novel, potent and selective prostaglandin EP4 receptor antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 2007; 322: 686-694. [Article] [Google Scholar]
  • Yang JJ, Yu WW, Hu LL, et al. Discovery and characterization of 1H-1,2,3-triazole derivatives as novel prostanoid EP4 receptor antagonists for cancer immunotherapy. J Med Chem 2019; 63: 569-590. [Article] [Google Scholar]
  • Blouin M, Han Y, Burch J, et al. The discovery of 4-{1-[({2,5-dimethyl-4-[4-(trifluoromethyl)benzyl]-3-thienyl}carbonyl)amino]cyclopropyl}benzoic Acid (MK-2894), a potent and selective prostaglandin E2 subtype 4 receptor antagonist. J Med Chem 2010; 53: 2227-2238. [Article] [Google Scholar]
  • Cheng Z, Wang Y, Zhang Y, et al. Discovery of 2 H-indazole-3-carboxamide derivatives as novel potent prostanoid EP4 receptor antagonists for colorectal cancer immunotherapy. J Med Chem 2023; 66: 6218-6238. [Article] [Google Scholar]
  • Hong DS, Parikh A, Shapiro GI, et al. First-in-human phase I study of immunomodulatory E7046, an antagonist of PGE2-receptor E-type 4 (EP4), in patients with advanced cancers. J Immunother Cancer 2020; 8: e000222. [Article] [Google Scholar]
  • Das D, Hong J. Prostaglandin E2 receptor 4 (EP4): A promising therapeutic target for the treatment of cancer and inflammatory diseases. Curr Chem Biol 2021; 15: 50-68. [Article] [Google Scholar]
  • Akbari B, Soltantoyeh T, Shahosseini Z, et al. PGE2-EP2/EP4 signaling elicits mesoCAR T cell immunosuppression in pancreatic cancer. Front Immunol 2023; 14: 1209572. [Article] [Google Scholar]
  • Liu X, Xiao T, Si S, et al. How does noise help robustness? Explanation and exploration under the neural SDE framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, 2020, 282–290 [Google Scholar]
  • Bishop CM. Training with noise is equivalent to Tikhonov regularization. Neural Computation 1995; 7: 108-116. [Article] [CrossRef] [Google Scholar]
  • Graves A, Graves A. Long short-term memory. In: Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2012. 37–45 [Google Scholar]
  • Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. ArXiv:1406.1078 [Google Scholar]
  • ArunKumar KE, Kalaga DV, Mohan Sai Kumar C, et al. Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alex Eng J 2022; 61: 7585-7603. [Article] [Google Scholar]
  • Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys Nonlinear Phenom 2020; 404: 132306. [Article] [Google Scholar]
  • ArunKumar KE, Kalaga DV, Kumar CMS, et al. Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells. Chaos Solitons Fractals 2021; 146: 110861. [Article] [Google Scholar]
  • Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018, 7132–7141 [Google Scholar]
  • Li P, Wang J, Qiao Y, et al. An effective self-supervised framework for learning expressive molecular global representations to drug discovery. Brief Bioinform 2021; 22: bbab109. [Article] [Google Scholar]
  • Liu S, Wang H, Liu W, et al. Pre-training molecular graph representation with 3D geometry. ArXiv:2110.07728 [Google Scholar]
  • Wang Y, Wang J, Cao Z, et al. Molecular contrastive learning of representations via graph neural networks. Nat Mach Intell 2022; 4: 279-287. [Article] [Google Scholar]
  • Kim S, Chen J, Cheng T, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res 2019; 47: D1102-D1109. [Article] [Google Scholar]
  • Probst D, Reymond JL. Visualization of very large high-dimensional data sets as minimum spanning trees. J Cheminform 2020; 12: 12. [Article] [Google Scholar]
  • Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010; 50: 742-754. [Article] [Google Scholar]
  • Gilson MK, Liu T, Baitaluk M, et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 2016; 44: D1045-D1053. [Article] [Google Scholar]
  • Mendez D, Gaulton A, Bento AP, et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res 2019; 47: D930-D940. [Article] [Google Scholar]
  • Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. ArXiv:1609.02907 [Google Scholar]
  • Veličković P, Cucurull G, Casanova A, et al. Graph attention networks. ArXiv:1710.10903 [Google Scholar]
  • Gilmer J, Schoenholz SS, Riley PF, et al. Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning. PMLR, 2017, 1263–1272 [Google Scholar]
  • Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7: 42717. [Article] [Google Scholar]
  • Yokoyama U, Iwatsubo K, Umemura M, et al. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65: 1010-1052. [Article] [Google Scholar]
  • Fan F, Binkowski BF, Butler BL, et al. Novel genetically encoded biosensors using firefly luciferase. ACS Chem Biol 2008; 3: 346-351. [Article] [Google Scholar]
  • Toyoda Y, Morimoto K, Suno R, et al. Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat Chem Biol 2019; 15: 18-26. [Article] [Google Scholar]
  • Cilenti F, Barbiera G, Caronni N, et al. A PGE2-MEF2A axis enables context-dependent control of inflammatory gene expression. Immunity 2021; 54: 1665-1682.e14. [Article] [Google Scholar]
  • Na YR, Jung D, Stakenborg M, et al. Prostaglandin E2 receptor PTGER4-expressing macrophages promote intestinal epithelial barrier regeneration upon inflammation. Gut 2021; 70: 2249-2260. [Article] [Google Scholar]
  • Gunassekaran GR, Poongkavithai Vadevoo SM, Baek MC, et al. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials 2021; 278: 121137. [Article] [Google Scholar]
  • Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov 2022; 12: 134-153. [Article] [Google Scholar]
  • Gonda TA, Fang J, Salas M, et al. A DNA hypomethylating drug alters the tumor microenvironment and improves the effectiveness of immune checkpoint inhibitors in a mouse model of pancreatic cancer. Cancer Res 2020; 80: 4754-4767. [Article] [Google Scholar]
  • Molgora M, Esaulova E, Vermi W, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 2020; 182: 886-900.e17. [Article] [Google Scholar]
  • Ghorbani M, Gendelev L, Beroza P, et al. Autoregressive fragment-based diffusion for pocket-aware ligand design. ArXiv:2401.05370 [Google Scholar]
  • Zhang O, Zhang J, Jin J, et al. ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling. Nat Mach Intell 2023; 5: 1020-1030. [Article] [Google Scholar]
  • Chan L, Kumar R, Verdonk M, et al. A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand design. Nat Mach Intell 2022; 4: 1130-1142. [Article] [Google Scholar]
  • Campbell Q, Cox S, Medina J, et al. MDCrow: Automating molecular dynamics workflows with large language models. ArXiv:2502.09565 [Google Scholar]
  • Wang J, Hsieh CY, Wang M, et al. Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning. Nat Mach Intell 2021; 3: 914-922. [Article] [Google Scholar]
  • Yu J, Zheng Y, Koh HY, et al. Collaborative expert LLMs guided multi-objective molecular optimization. ArXiv:2503.03503 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.