Open Access
Issue
Natl Sci Open
Volume 4, Number 4, 2025
Article Number 20250010
Number of page(s) 10
Section Physics
DOI https://doi.org/10.1360/nso/20250010
Published online 22 May 2025
  • de Gennes PG. Granular matter: A tentative view. Rev Mod Phys 1999; 71: S374-S382. [Article] [Google Scholar]
  • Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Rev Mod Phys 1996; 68: 1259-1273. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Manbeck HB. Predicting thermally induced pressures in grain bins. Trans ASAE 1984; 27: 482-486. [Article] [Google Scholar]
  • Zheng Y, Rimmington GM, Xie Z, et al. Responses to air temperature and soil moisture of growth of four dominant species on sand dunes of central Inner Mongolia. J Plant Res 2008; 121: 473-482. [Article] [Google Scholar]
  • Rotta Loria AF, Coulibaly JB. Thermally induced deformation of soils: A critical overview of phenomena, challenges and opportunities. GeoMech Energy Environ 2021; 25: 100193. [Article] [Google Scholar]
  • Nadim F, Kjekstad O, Peduzzi P, et al. Global landslide and avalanche hotspots. Landslides 2006; 3: 159-173. [Article] [Google Scholar]
  • Lisowski A, Wójcik J, Klonowski J, et al. Compaction of chopped material in a mini silo. Biomass Bioenergy 2020; 139: 105631. [Article] [Google Scholar]
  • He SH, Shan HF, Xia TD, et al. The effect of temperature on the drained shear behavior of calcareous sand. Acta Geotech 2021; 16: 613-633. [Article] [Google Scholar]
  • Ng CWW, Wang SH, Zhou C. Volume change behaviour of saturated sand under thermal cycles. Géotechnique Lett 2016; 6: 124-131. [Article] [Google Scholar]
  • Sittidumrong J, Jotisankasa A, Chantawarangul K. Effect of thermal cycles on volumetric behaviour of Bangkok sand. GeoMech Energy Environ 2019; 20: 100127. [Article] [Google Scholar]
  • Pan Y, Coulibaly JB, Rotta Loria AF. An experimental investigation challenging the thermal collapse of sand. Géotechnique 2024; 74: 296-306. [Article] [Google Scholar]
  • Pan Y, Seo D, Rivers M, et al. Microscopic insights into thermal cycling effects in granular materials via X-ray microtomography. Granular Matter 2024; 26: 98. [Article] [Google Scholar]
  • Chen K, Cole J, Conger C, et al. Packing grains by thermal cycling. Nature 2006; 442: 257. [Article] [Google Scholar]
  • Divoux T, Gayvallet H, Géminard JC. Creep motion of a granular pile induced by thermal cycling. Phys Rev Lett 2008; 101: 148303. [Article] [Google Scholar]
  • Vanel L, Clément E. Pressure screening and fluctuations at the bottom of a granular column. Eur Phys J B 1999; 11: 525-533. [Article] [Google Scholar]
  • Blanc B, Géminard JC. Intrinsic creep of a granular column subjected to temperature changes. Phys Rev E 2013; 88: 022201. [Article] [Google Scholar]
  • Kou B, Cao Y, Li J, et al. Granular materials flow like complex fluids. Nature 2017; 551: 360-363. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Nicolas M, Duru P, Pouliquen O. Compaction of a granular material under cyclic shear. Eur Phys J E 2000; 3: 309-314. [Article] [Google Scholar]
  • Yuan Y, Zeng Z, Xing Y, et al. From creep to flow: Granular materials under cyclic shear. Nat Commun 2024; 15: 3866. [Article] [Google Scholar]
  • Richard P, Nicodemi M, Delannay R, et al. Slow relaxation and compaction of granular systems. Nat Mater 2005; 4: 121-128. [Article] [Google Scholar]
  • Knight JB, Fandrich CG, Lau CN, et al. Density relaxation in a vibrated granular material. Phys Rev E 1995; 51: 3957-3963. [Article] [Google Scholar]
  • Nowak ER, Knight JB, Povinelli ML, et al. Reversibility and irreversibility in the packing of vibrated granular material. Powder Tech 1997; 94: 79-83. [Article] [Google Scholar]
  • Arceri F, Landes FP, Berthier L, et al. A statistical mechanics perspective on glasses and aging. In: Encyclopedia of Complexity and Systems Science. Berlin, Heidelberg: Springer, 2021 [Google Scholar]
  • Zhang S, Zeng Z, Yuan H, et al. Precursory arch-like structures explain the clogging probability in a granular hopper flow. Commun Phys 2024; 7: 202. [Article] [Google Scholar]
  • Williams G, Watts DC. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 1970; 66: 80. [Article] [Google Scholar]
  • Xia C, Li J, Cao Y, et al. The structural origin of the hard-sphere glass transition in granular packing. Nat Commun 2015; 6: 8409. [Article] [Google Scholar]
  • Barker GC, Mehta A. Vibrated powders: Structure, correlations, and dynamics. Phys Rev A 1992; 45: 3435-3446. [Article] [Google Scholar]
  • Barker GC, Mehta A. Transient phenomena, self-diffusion, and orientational effects in vibrated powders. Phys Rev E 1993; 47: 184-188. [Article] [Google Scholar]
  • Mehta A. Real sandpiles: Dilatancy, hysteresis and cooperative dynamics. Physica A-Statistical Mech its Appl 1992; 186: 121-153. [Article] [Google Scholar]
  • Mehta A, Needs RJ, Dattagupta S. The Langevin dynamics of vibrated powders. J Stat Phys 1992; 68: 1131-1141. [Article] [Google Scholar]
  • Nowak E, Knight J, Ben-Naim E, et al. Density fluctuations in vibrated granular materials. Phys Rev E 1998; 57: 1971-1982. [Article] [Google Scholar]
  • Boutreux T, de Geennes PG. Compaction of granular mixtures: A free volume model. Physica A-Statistical Mech its Appl 1997; 244: 59-67. [Article] [Google Scholar]
  • Cavagna A. Supercooled liquids for pedestrians. Phys Rep 2009; 476: 51-124. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.