Open Access
Issue
Natl Sci Open
Volume 4, Number 4, 2025
Article Number 20240054
Number of page(s) 16
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20240054
Published online 29 May 2025
  • Health Effects Institute. State of Global Air 2024. Boston, 2024 [Google Scholar]
  • Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. Ecotoxicol Environ Saf 2024; 278: 116429. [Article] [Google Scholar]
  • You R, Ho YS, Chang RCC. The pathogenic effects of particulate matter on neurodegeneration: A review. J Biomed Sci 2022; 29: 15. [Article] [Google Scholar]
  • Macchi C, Sirtori CR, Corsini A, et al. Pollution from fine particulate matter and atherosclerosis: A narrative review. Environ Int 2023; 175: 107923. [Article] [Google Scholar]
  • Zhang L, Yao M. Ambient particle composition and toxicity in 31 major cities in China. Fundam Res 2024; 4: 505-515. [Article] [Google Scholar]
  • Li J, Chen H, Li X, et al. Differing toxicity of ambient particulate matter (PM) in global cities. Atmos Environ 2019; 212: 305-315. [Article] [Google Scholar]
  • Xu J, Wang P, Li T, et al. Exposure to source-specific particulate matter and health effects: A review of epidemiological studies. Curr Pollut Rep 2022; 8: 569-593. [Article] [Google Scholar]
  • Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923-1994. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Lelieveld J, Evans JS, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015; 525: 367-371. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Li J, Liu F, Liang F, et al. Long-term effects of high exposure to ambient fine particulate matter on coronary heart disease incidence: A population-based Chinese cohort study. Environ Sci Technol 2020; 54: 6812-6821. [Article] [Google Scholar]
  • Chen H, Li X, Yao M. Rats sniff off toxic air. Environ Sci Technol 2020; 54: 3437-3446. [Article] [Google Scholar]
  • Ma H, Li J, Wan C, et al. Inflammation response of water-soluble fractions in atmospheric fine particulates: A seasonal observation in 10 large Chinese cities. Environ Sci Technol 2019; 53: 3782-3790. [Article] [Google Scholar]
  • Jheng YT, Putri DU, Chuang HC, et al. Prolonged exposure to traffic-related particulate matter and gaseous pollutants implicate distinct molecular mechanisms of lung injury in rats. Part Fibre Toxicol 2021; 18: 1-6. [Article] [Google Scholar]
  • Zhang L, Li X, Chen H, et al. Haze air pollution health impacts of breath-borne VOCs. Environ Sci Technol 2022; 56: 8541-8551. [Article] [Google Scholar]
  • Xing Q, Zhang L, Liu H, et al. Exhaled VOC biomarkers from rats injected with PMs from thirty-one major cities in China. Environ Sci Technol 2023; 57: 20510-20520. [Article] [Google Scholar]
  • Braconi D, Bernardini G, Santucci A. Saccharomyces cerevisiae as a model in ecotoxicological studies: A post-genomics perspective. J Proteom 2016; 137: 19-34. [Article] [Google Scholar]
  • Gil FN, Moreira-Santos M, Chelinho S, et al. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: Comparison with standard aquatic and soil toxicity assays. Sci Total Environ 2015; 505: 161-171. [Article] [Google Scholar]
  • Hosiner D, Gerber S, Lichtenberg-Fraté H, et al. Impact of acute metal stress in saccharomyces cerevisiae. PLoS One 2014; 9: e83330. [Article] [Google Scholar]
  • Kasemets K, Käosaar S, Vija H, et al. Toxicity of differently sized and charged silver nanoparticles to yeast Saccharomyces cerevisiae BY4741: A nano-biointeraction perspective. Nanotoxicology 2019; 13: 1041-1059. [Article] [Google Scholar]
  • Szostak JW, Blackburn EH. Cloning yeast telomeres on linear plasmid vectors. Cell 1982; 29: 245-255. [Article] [Google Scholar]
  • Zhou Z, Elledge SJ. DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 1993; 75: 1119-1127. [Article] [Google Scholar]
  • Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction.. J Cell Biol 1992; 119: 301-311. [Article] [Google Scholar]
  • Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643-649. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science 1996; 274: 546-567. [Article] [Google Scholar]
  • Botstein D, Chervitz SA, Cherry M. Yeast as a model organism. Science 1997; 277: 1259-1260. [Article] [Google Scholar]
  • Zhao XG, Duan XL. Handbook of Exposure Parameters for Chinese Population (Adult Volume) (in Chinese). Beijing: China Environmental Publishing Group, 2014 [Google Scholar]
  • Ministry of Ecology and Environment of the People’s Republic of China. Ambient Air Quality Standards. Beijing: China Environmental Science Press, 2012 [Google Scholar]
  • Chen H, Qi X, Zhang L, et al. COVID-19 screening using breath-borne volatile organic compounds. J Breath Res 2021; 15: 047104. [Article] [Google Scholar]
  • Pecoraro L, Wang X, Shah D, et al. Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J Fungi 2021; 8: 21. [Article] [Google Scholar]
  • Justinić I, Katić A, Uršičić D, et al. Combining proteomics and lipid analysis to unravel Confidor stress response in Saccharomyces cerevisiae. Environ Toxicol 2020; 35: 346-358. [Article] [Google Scholar]
  • Chen H, Zheng Y, Wang M, et al. Gene-regulated release of distinctive volatile organic compounds from stressed living cells. Environ Sci Technol 2022; 56: 9546-9555. [Article] [Google Scholar]
  • Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37: 101674. [Article] [Google Scholar]
  • KEGG pathway. https://www.genome.jp/pathway/map05208 [Google Scholar]
  • Sutaria SR, Gori SS, Morris JD, et al. Lipid peroxidation produces a diverse mixture of saturated and unsaturated aldehydes in exhaled breath that can serve as biomarkers of lung cancer—A review. Metabolites 2022; 12: 561. [Article] [Google Scholar]
  • Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 2017; 39: 73-82. [Article] [Google Scholar]
  • Trayhurn P. Thermogenesis. Caballero BBT-E of FS and N. 2nd ed. Oxford: Academic Press, 2003 [Google Scholar]
  • Lettieri-Barbato D. Redox control of non-shivering thermogenesis. Mol Metab 2019; 25: 11-19. [Article] [Google Scholar]
  • Robinson JR, Isikhuemhen OS, Anike FN. Fungal-metal interactions: A review of toxicity and homeostasis. J Fungi 2021; 7: 225. [Article] [Google Scholar]
  • Ghosh P, Mukherji S. Fate, detection technologies and toxicity of heterocyclic PAHs in the aquatic and soil environments. Sci Total Environ 2023; 892: 164499. [Article] [Google Scholar]
  • Barbosa Jr F, Rocha BA, Souza MCO, et al. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. J Toxicol Environ Health Part B 2023; 26: 28-65. [Article] [Google Scholar]
  • Gao P, da Silva E, Hou L, et al. Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environ Int 2018; 119: 466-477. [Article] [Google Scholar]
  • Shen Q, Yu H, Liu Y, et al. Combined exposure of MAHs and PAHs enhanced amino acid and lipid metabolism disruption in epithelium leading asthma risk. Environ Pollution 2024; 343: 123261. [Article] [Google Scholar]
  • Feldmann H. Yeast: Molecular and Cell Biology. 2nd ed. New Jersey: Wiley-Blackwell, 2012 [Google Scholar]
  • Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2010; 34: 925-951. [Article] [Google Scholar]
  • Zhou Q, Liu B, Chen Y, et al. Characterization of PAHs in size-fractionated submicron atmospheric particles and their association with the intracellular oxidative stress. Chemosphere 2017; 182: 1-7. [Article] [Google Scholar]
  • Moretti S, Smets W, Hofman J, et al. Human inflammatory response of endotoxin affected by particulate matter-bound transition metals. Environ Pollution 2019; 244: 118-126. [Article] [Google Scholar]
  • Hach PF, Marchant HK, Krupke A, et al. Rapid microbial diversification of dissolved organic matter in oceanic surface waters leads to carbon sequestration. Sci Rep 2020; 10: 13025. [Article] [Google Scholar]
  • Lechtenfeld OJ, Hertkorn N, Shen Y, et al. Marine sequestration of carbon in bacterial metabolites. Nat Commun 2015; 6: 6711. [Article] [Google Scholar]
  • Xu Y, Dong X, Xiao H, et al. Water-insoluble components in rainwater in suburban Guiyang, Southwestern China: A potential contributor to dissolved organic carbon. JGR Atmos 2022; 127: e2022JD037721. [Article] [Google Scholar]
  • Samake A, Uzu G, Martins JMF, et al. The unexpected role of bioaerosols in the oxidative potential of PM. Sci Rep 2017; 7: 1. [Article] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.