Open Access
Issue
Natl Sci Open
Volume 4, Number 4, 2025
Article Number 20250022
Number of page(s) 11
Section Materials Science
DOI https://doi.org/10.1360/nso/20250022
Published online 09 July 2025
  • Wu L, Fu H, Li S, et al. Phase-engineered cathode for super-stable potassium storage. Nat Commun 2023; 14: 644. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Hu J, Dong J, et al. Artificial solid‐electrolyte interphase enabled high‐capacity and stable cycling potassium metal batteries. Adv Energy Mater 2019; 9: 1902697. [Article] [Google Scholar]
  • Luo W, Feng Y, Shen D, et al. Engineering ion diffusion by CoS@SnS heterojunction for ultrahigh-rate and stable potassium batteries. ACS Appl Mater Interfaces 2022; 14: 16379-16385. [Article] [Google Scholar]
  • Xia M, Feng Y, Wei J, et al. A rechargeable K/Br battery. Adv Funct Mater 2022; 32: 2205879. [Article] [Google Scholar]
  • Dhir S, Wheeler S, Capone I, et al. Outlook on K-ion batteries. Chem 2020; 6: 2442-2460. [Article] [Google Scholar]
  • Fan L, Xie H, Hu Y, et al. A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ Sci 2023; 16: 305-315. [Article] [Google Scholar]
  • Shen D, Rao AM, Zhou J, et al. High‐potential cathodes with nitrogen active centres for quasi‐solid proton‐ion batteries. Angew Chem Int Ed 2022; 61: e202201972. [Article] [Google Scholar]
  • Li F, Luo W, Fu H, et al. Construct a quasi‐high‐entropy interphase for advanced low‐temperature aqueous zinc‐ion battery. Adv Funct Mater 2025; 35: 2416668. [Article] [Google Scholar]
  • Zhang Z, Qiao Y, Zhao J, et al. Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chin Chem Lett 2025; 36: 109907. [Article] [Google Scholar]
  • Gu ZY, Wang XT, Zhao XX, et al. Advanced K3V2(PO4)2O2F cathode for rechargeable potassium-ion batteries with high energy density. Appl Phys Lett 2024; 124: 183904. [Article] [Google Scholar]
  • Zhang Q, Wang Z, Zhang S, et al. Cathode materials for potassium-ion batteries: Current status and perspective. Electrochem Energ Rev 2018; 1: 625-658. [Article] [Google Scholar]
  • Wang H, Yu D, Wang X, et al. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium‐ion batteries. Angew Chem Int Ed 2019; 58: 16451-16455. [Article] [Google Scholar]
  • Hameed AS, Katogi A, Kubota K, et al. A layered inorganic-organic open framework material as a 4 V positive electrode with high‐rate performance for K‐ion batteries. Adv Energy Mater 2019; 9: 1902528. [Article] [Google Scholar]
  • Lin H, Li M, Yang X, et al. Nanosheets‐assembled CuSe crystal pillar as a stable and high‐power anode for sodium‐ion and potassium‐ion batteries. Adv Energy Mater 2019; 9: 1900323. [Article] [Google Scholar]
  • Heng, Gu, Liu, et al. Breaking anionic solvation barrier for safe and durable potassium‐ion batteries under ultrahigh‐voltage operation. Angew Chem Int Ed 2025; 64: e202423044. [Article] [Google Scholar]
  • Liu Y, Gu ZY, Heng YL, et al. Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: From lowered Fe-3d orbital energy level to advanced potassium-ion batteries. Green Energy Environ 2024; 9: 1724-1733. [Article] [Google Scholar]
  • Xiao Z, Meng J, Xia F, et al. K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries. Energy Environ Sci 2020; 13: 3129-3137. [Article] [Google Scholar]
  • Huang J, Cai X, Yin H, et al. A new candidate in polyanionic compounds for a potassium-ion battery cathode: KTiOPO4. J Phys Chem Lett 2021; 12: 2721-2726. [Article] [Google Scholar]
  • Kim H, Ji H, Wang J, et al. Next-generation cathode materials for non-aqueous potassium-ion batteries. Trends Chem 2019; 1: 682-692. [Article] [Google Scholar]
  • Li L, Hu Z, Lu Y, et al. A low‐strain potassium‐rich prussian blue analogue cathode for high power potassium‐ion batteries. Angew Chem 2021; 133: 13160-13166. [Article] [Google Scholar]
  • Xie B, Sun B, Gao T, et al. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord Chem Rev 2022; 460: 214478. [Article] [Google Scholar]
  • Yang Y, Zhou J, Wang L, et al. Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries. Nano Energy 2022; 99: 107424. [Article] [Google Scholar]
  • Shu W, Han C, Wang X. Prussian blue analogues cathodes for nonaqueous potassium‐ion batteries: Past, present, and future. Adv Funct Mater 2024; 34: 2309636. [Article] [Google Scholar]
  • Zakaria MB, Chikyow T. Recent advances in Prussian blue and Prussian blue analogues: Synthesis and thermal treatments. Coord Chem Rev 2017; 352: 328-345. [Article] [Google Scholar]
  • Gao Y, Wu X, Wang L, et al. Structurally stable, low H2O Prussian blue analogs toward high performance sodium storage. Adv Funct Mater 2024; 34: 2314860. [Article] [Google Scholar]
  • Peng J, Zhang W, Hu Z, et al. Ice-assisted synthesis of highly crystallized prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett 2022; 22: 1302-1310. [Article] [Google Scholar]
  • Deng L, Qu J, Niu X, et al. Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nat Commun 2021; 12: 2167. [Article] [Google Scholar]
  • Zhou A, Xu Z, Gao H, et al. Size‐, water‐, and defect‐regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low‐cost sodium‐ion batteries. Small 2019; 15: 1902420. [Article] [Google Scholar]
  • Liu Y, Chu W, Xu Y, et al. The effect of coprecipitation and heating temperature on structural evolution and electrochemical performance of iron-based prussian blue analogs. J Solid State Electrochem 2024; 28: 4105-4118. [Article] [Google Scholar]
  • Kim J, Yi, Li L, et al. Effect of valence state of cobalt in cobalt hexacyanoferrate coprecipitated at different temperatures on electrochemical behavior. Intl J Energy Res 2022; 46: 22717-22729. [Article] [Google Scholar]
  • Erdemir D, Lee AY, Myerson AS. Nucleation of crystals from solution: Classical and two-step models. Acc Chem Res 2009; 42: 621-629. [Article] [Google Scholar]
  • Li J, Deepak FL. In situ kinetic observations on crystal nucleation and growth. Chem Rev 2022; 122: 16911-16982. [Article] [Google Scholar]
  • Zhang JB, Zhang PY, Ma K, et al. Hydrogen bonding interactions between ethylene glycol and water: Density, excess molar volume, and spectral study. Sci China Ser B-Chem 2008; 51: 420-426. [Article] [Google Scholar]
  • Yang DH, Yao ZQ, Wu D, et al. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J Mater Chem A 2016; 4: 18621-18627. [Article] [Google Scholar]
  • Gao C, Liu Y, Zheng L, et al. The effect of electrolyte type on the Li ion intercalation in copper hexacyanoferrate. J Electrochem Soc 2019; 166: A1732-A1737. [Article] [Google Scholar]
  • Gerber SJ, Erasmus E. Electronic effects of metal hexacyanoferrates: An XPS and FTIR study. Mater Chem Phys 2018; 203: 73-81. [Article] [Google Scholar]
  • Xiang S, Zhang X, Tao Q, et al. Adsorption of cesium on mesoporous SBA-15 material containing embedded copper hexacyanoferrate. J Radioanal Nucl Chem 2019; 320: 609-619. [Article] [Google Scholar]
  • Ma XH, Jia W, Wang J, et al. Synthesis of copper hexacyanoferrate nanoflake as a cathode for sodium-ion batteries. Ceram Int 2019; 45: 740-746. [Article] [Google Scholar]
  • Xia M, Zhang X, Liu T, et al. Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chem Eng J 2020; 394: 124923. [Article] [Google Scholar]
  • Su D, McDonagh A, Qiao, et al. High‐capacity aqueous potassium‐ion batteries for large‐scale energy storage. Adv Mater 2017; 29: 1604007. [Article] [Google Scholar]
  • Zhang L, Chen L, Zhou X, et al. Towards high‐voltage aqueous metal‐ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv Energy Mater 2015; 5: 1400930. [Article] [Google Scholar]
  • Ren W, Chen X, Zhao C. Ultrafast aqueous potassium‐ion batteries cathode for stable intermittent grid‐scale energy storage. Adv Energy Mater 2018; 8: 1801413. [Article] [Google Scholar]
  • Zhu K, Li Z, Jin T, et al. Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries. J Mater Chem A 2020; 8: 21103-21109. [Article] [Google Scholar]
  • Han J, Mariani A, Zhang H, et al. Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries. Energy Storage Mater 2020; 30: 196-205. [Article] [Google Scholar]
  • Shang Y, Li X, Song J, et al. Unconventional Mn vacancies in Mn-Fe prussian blue analogs: Suppressing Jahn-Teller distortion for ultrastable sodium storage. Chem 2020; 6: 1804-1818. [Article] [Google Scholar]
  • Chen X, Hua C, Zhang K, et al. Control of gradient concentration Prussian white cathodes for high-performance potassium-ion batteries. ACS Appl Mater Interfaces 2023; 15: 47125-47134. [Article] [Google Scholar]
  • Wu X, Sun M, Guo S, et al. Vacancy‐free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium‐ion batteries. ChemNanoMat 2015; 1: 188-193. [Article] [Google Scholar]
  • Wang Z, Zhuo W, Li J, et al. Regulation of ferric iron vacancy for Prussian blue analogue cathode to realize high-performance potassium ion storage. Nano Energy 2022; 98: 107243. [Article] [Google Scholar]
  • Wang W, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun 2020; 11: 980. [Article] [Google Scholar]
  • Wu X, Cao Y, Ai X, et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem Commun 2013; 31: 145-148. [Article] [Google Scholar]
  • Li W, Zhang F, Xiang X, et al. Nickel‐substituted copper hexacyanoferrate as a superior cathode for aqueous sodium‐ion batteries. ChemElectroChem 2018; 5: 350-354. [Article] [Google Scholar]
  • Wang B, Wang X, Liang C, et al. An all‐prussian‐blue‐based aqueous sodium‐ion battery. ChemElectroChem 2019; 6: 4848-4853. [Article] [Google Scholar]
  • Trócoli R, La Mantia F. An aqueous zinc‐ion battery based on copper hexacyanoferrate. ChemSusChem 2015; 8: 481-485. [Article] [Google Scholar]
  • Bi H, Wang X, Liu H, et al. A universal approach to aqueous energy storage via ultralow‐cost electrolyte with super‐concentrated sugar as hydrogen‐bond‐regulated solute. Adv Mater 2020; 32: 2000074. [Article] [Google Scholar]
  • Lu K, Zhang H, Gao S, et al. High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes. Nanoscale 2018; 10: 20754-20760. [Article] [Google Scholar]
  • Wessells CD, McDowell MT, Peddada SV, et al. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 2012; 6: 1688-1694. [Article] [Google Scholar]
  • Lu Y, Zhao CZ, Huang JQ, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022; 6: 1172-1198. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.